• Title/Summary/Keyword: digital elevation models

Search Result 149, Processing Time 0.026 seconds

Microcellular Propagation Loss Prediction Using Neural Networks and 3-D Digital Terrain Maps (신경회로망과 3차원 지형데이터를 이용한 마이크로셀 전파손실 예측)

  • 양서민;이혁준
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.3
    • /
    • pp.419-429
    • /
    • 1999
  • Identifying the boundary of the effective receiving power of waves is one of the most important factors for cell optimization. In this paper, we introduce a propagation loss prediction model which yields highly accurate prediction in very complex areas as Seoul where a mixture of many large buildings, small buildings, broad streets, narrow alleys, rivers and forests co-exist in an irregular arrangement. This prediction model is based on neural networks trained on field measurement data collected in the past. Using these data along with 3-D digital elevation maps and vector data for building structures, we extract the parameter values which mainly affect the amount of propagation loss. These parameter values are then used as the inputs to the neural network. Trained neural network becomes the approximated function of the propagation loss model which generalizes very well and can predict accurately in the regions not included in training the neural network. The experimental results show a superior performance over the other models in the cells operating in the city of Seoul.

  • PDF

Distributed Rainfall-Runoff Modeling Using GIS (GIS를 이용한 분산형 강우-유형 모형의 개발)

  • 김경숙;박종현;윤기준;이상호
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.2
    • /
    • pp.1-16
    • /
    • 1995
  • This study is conducted to eveluate the potential of a GIS to assist an application problem. GIS has been applied to rainfall-runoff modeling over Soyang area. Various rainfall-runoff models have been developed over the years. A distributed rainfall-runoff model is selected because it considers the topographic characteristics over the basin. GIS can handle the spatial data to enhance the modeling. GRASS-a public domain GIS S/W-is used for GIS tools. Digital database is generated, including soil map, vegetation map, digital elevation model, basin and subbasin map, and water stream. The inpu data for the model has been generated and manupulated using GIS. The database, model and GIS are integrated for on-line operation. The inflow hydrographs are tested for the flood of Sept., 1990. This shows the promising results even without the calibration.

Feasibility Verification of Real-time Digital River Twin Model Implementation for Small Stream Risk Monitoring (소하천 및 저지대 침수 위험 감시를 위한 실시간 하천 디지털 트윈 모델 구현 가능성 검증)

  • Bong-Joo Jang;Intaek Jung;Sung-Sim Yoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.315-315
    • /
    • 2023
  • 급격한 기후변화에 기인하여 전 세계적으로 거듭되는 돌발홍수로 인한 피해가 급격히 증가하고 있는 실정이다. 우리나라에서도 최근 중소 규모의 하천 뿐 아니라 도시 생활하천, 도심지 저지대에서 갑작스런 홍수와 침수로 인해 많은 인명과 재산 피해를 경험하고 있다. 이런 문제를 인식하여 최근 정부차원에서 다양한 센서와 인공지능에 기반하는 많은 인프라 및 연구 투자가 이루어지고 있지만, 높은 설치 및 운영 비용과 우리나라의 복잡한 하천 환경 특성으로 인해 소하천이나 도심지 저지대에서는 그 효율성을 제대로 발휘하지 못하고 있다. 따라서 본 논문에서는 주변환경의 변화에 강인한 복합 센서단말을 통해, 하천 정보(유량, 유속, 수위 등)을 실시간 측정하고, 해당지역의 특성을 고려한 하천 또는 저지대의 위험도를 스스로 판단할 수 있는 기술을 제안한다. 또한, 본 논문에서는 제안한 저비용 초소형의 단말 장치로 지점의 하천 정보를 실시간 측정하여 IoT망을 통해 3차원 하천 디지털트윈 모델로 전달하여, 유속과 수위를 그대로 재연함으로써, 하천 침수 위험 감시의 효율성을 검증하였다. 3차원 DEM(Digital Elevation Models) 데이터와 실제 하천을 관측한 데이터를 이용한 디지털트윈 검증 결과, 데이터 전송 지연시간을 감안하여 3초 이내에 하천의 수위와 유속이 3차원 모델에 반영되는 것을 확인하였다. 이 결과로부터 열악한 환경에서도 실시간 하천 상황을 원거리에서 모니터링 할 수 있으며, 강우와 유출에 따른 하천 홍수 메카니즘을 새롭게 시뮬레이션할 수 있는 방법론을 제시할 수 있을 것으로 기대한다.

  • PDF

Developing Surface Water Quality Modeling Framework Considering Spatial Resolution of Pollutant Load Estimation for Saemangeum Using HSPF (오염원 산정단위 수준의 소유역 세분화를 고려한 새만금유역 수문·수질모델링 적용성 검토)

  • Seong, Chounghyun;Hwang, Syewoon;Oh, Chansung;Cho, Jaepil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.3
    • /
    • pp.83-96
    • /
    • 2017
  • This study presented a surface water quality modeling framework considering the spatial resolution of pollutant load estimation to better represent stream water quality characteristics in the Saemangeum watershed which has been focused on keeping its water resources sustainable after the Saemangeum embankment construction. The watershed delineated into 804 sub-watersheds in total based on the administrative districts, which were units for pollutant load estimation and counted as 739 in the watershed, Digital Elevation Model (DEM), and agricultural structures such as drainage canal. The established model consists of 7 Mangyung (MG) sub-models, 7 Dongjin (DJ) sub-models, and 3 Reclaimed sub-models, and the sub-models were simulated in a sequence of upstream to downstream based on its connectivity. The hydrologic calibration and validation of the model were conducted from 14 flow stations for the period of 2009 and 2013 using an automatic calibration scheme. The model performance to the hydrologic stations for calibration and validation showed that the Nash-Sutcliffe coefficient (NSE) ranged from 0.66 to 0.97, PBIAS were -31.0~16.5 %, and $R^2$ were from 0.75 to 0.98, respectively in a monthly time step and therefore, the model showed its hydrological applicability to the watershed. The water quality calibration and validation were conducted based on the 29 stations with the water quality constituents of DO, BOD, TN, and TP during the same period with the flow. The water quality model were manually calibrated, and generally showed an applicability by resulting reasonable variability and seasonality, although some exceptional simulation results were identified in some upstream stations under low-flow conditions. The spatial subdivision in the model framework were compared with previous studies to assess the consideration of administrative boundaries for watershed delineation, and this study outperformed in flow, but showed a similar level of model performance in water quality. The framework presented here can be applicable in a regional scale watershed as well as in a need of fine-resolution simulation.

An Automated OpenGIS-based Tool Development for Flood Inundation Mapping and its Applications in Jeju Hancheon (OpenGIS 기반 홍수범람지도 작성 자동화 툴 개발 및 제주 한천 적용 연구)

  • Kim, Kyungdong;Kim, Taeeun;Kim, Dongsu;Yang, Sungkee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.691-702
    • /
    • 2019
  • Flood inundation map has various important roles in terms of municipal planning, timely dam operation, economic levee design, and building flood forecasting systems. Considering that the riparian areas adjacent to national rivers with high potential flood vulnerability conventionally imposed special cares to justify applications of recently available two- or three-dimensional flood inundation numerical models on top of digital elevation models of dense spatial resolution such as LiDAR irrespective of their high costs. On the contrary, local streams usually could not have benefits from recent technological advances, instead they inevitably have relied upon time-consuming manual drawings or have accepted DEMs with poor resolutions or inaccurate 1D numerical models for producing inundation maps due mainly to limited budgets and suitable techniques. In order to efficiently and cost-effectively provide a series of flood inundation maps dedicatedly for the local streams, this study proposed an OpenGIS-based flood mapping tool named Open Flood Mapper (OFM). The spatial accuracy of flood inundation map derived from the OFM was validated throughout comparison with an inundation trace map acquired after typhoon Nari in Hancheon basin located in Jeju Island. Also, a series of inundation maps from the OFM were comprehensively investigated to track the burst of flood in the extreme flood events.

Assessment of LODs and Positional Accuracy for 3D Model based on UAV Images (무인항공영상 기반 3D 모델의 세밀도와 위치정확도 평가)

  • Lee, Jae One;Kim, Doo Pyo;Sung, Sang Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.197-205
    • /
    • 2020
  • Compared to aerial photogrammetry, UAV photogrammetry has advantages in acquiring and utilizing high-resolution images more quickly. The production of 3D models using UAV photogrammetry has become an important issue at a time when the applications of 3D spatial information are proliferating. Therefore, this study assessed the feasibility of utilizing 3D models produced by UAV photogrammetry through quantitative and qualitative analyses. The qualitative analysis was performed in accordance with the LODs (Level of Details) specified in the 3D Land Spatial Information Construction Regulation. The results showed that the features on planes have a high LoD while features with elevation differences have a low LoD due to the occlusion area and parallax. Quantitative analysis was performed using the 3D coordinates obtained from the CPs (Checkpoints) and edges of nearby structures. The mean errors for residuals at CPs were 0.042 m to 0.059 m in the horizontal and 0.050 m to 0.161 m in the vertical coordinates while the mean errors in the structure's edges were 0.068 m and 0.071 m in horizontal and vertical coordinates, respectively. Therefore, this study confirmed the potential of 3D models from UAV photogrammetry for analyzing the digital twin and slope as well as BIM (Building Information Modeling).

Analysis and estimation of species distribution of Mythimna seperata and Cnaphalocrocis medinalis with land-cover data under climate change scenario using MaxEnt (MaxEnt를 활용한 기후변화와 토지 피복 변화에 따른 멸강나방 및 혹명나방의 한국 내 분포 변화 분석과 예측)

  • Taechul Park;Hojung Jang;SoEun Eom;Kimoon Son;Jung-Joon Park
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.2
    • /
    • pp.214-223
    • /
    • 2022
  • Among migratory insect pests, Mythimna seperata and Cnaphalocrocis medinalis are invasive pests introduced into South Korea through westerlies from southern China. M. seperata and C. medinalis are insect pests that use rice as a host. They injure rice leaves and inhibit rice growth. To understand the distribution of M. seperata and C. medinalis, it is important to understand environmental factors such as temperature and humidity of their habitat. This study predicted current and future habitat suitability models for understanding the distribution of M. seperata and C. medinalis. Occurrence data, SSPs (Shared Socio-economic Pathways) scenario, and RCP (Representative Concentration Pathway) were applied to MaxEnt (Maximum Entropy), a machine learning model among SDM (Species Distribution Model). As a result, M. seperata and C. medinalis are aggregated on the west and south coasts where they have a host after migration from China. As a result of MaxEnt analysis, the contribution was high in the order of Land-cover data and DEM (Digital Elevation Model). In bioclimatic variables, BIO_4 (Temperature seasonality) was high in M. seperata and BIO_2 (Mean Diurnal Range) was found in C. medinalis. The habitat suitability model predicted that M. seperata and C. medinalis could inhabit most rice paddies.

Solution Approaches to Multiple Viewpoint Problems: Comparative Analysis using Topographic Features (다중가시점 문제해결을 위한 접근방법: 지형요소를 이용한 비교 분석을 중심으로)

  • Kim, Young-Hoon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.3
    • /
    • pp.84-95
    • /
    • 2005
  • This paper presents solution heuristics to solving optimal multiple-viewpoint location problems that are based on topographic features. The visibility problem is to maximise the viewshed area for a set of viewpoints on digital elevation models (DEM). For this analysis, five areas are selected, and fundamental topographic features (peak, pass, and pit) are extracted from the DEMs of the study areas. To solve the visibility problem, at first, solution approaches based on the characteristics of the topographic features are explored, and then, a benchmark test is undertaken that solution performances of the solution methods, such as computing times, and visible area sizes, are compared with the performances of traditional spatial heuristics. The feasibility of the solution methods, then, are discussed with the benchmark test results. From the analysis, this paper can conclude that fundamental topographic features based solution methods suggest a new sight of visibility analysis approach which did not discuss in traditional algorithmic approaches. Finally, further research avenues are suggested such as exploring more sophisticated selection process of topographic features related to visibility analysis, exploiting systematic methods to extract topographic features, and robust spatial analytical techniques and optimization techniques that enable to use the topographic features effectively.

  • PDF

Effect of DEM Resolution in USLE LS Factor (USLE LS 인자 구축시 DEM 해상도가 미치는 영향)

  • Koo, Ja-Young;Yoon, Dae-Soon;Lee, Dong Jun;Han, Jeong Ho;Jung, Younghun;Yang, Jae E;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.1
    • /
    • pp.89-97
    • /
    • 2016
  • Digital Elevation Models (DEMs) have been used to represent the effects of topography on soil erosion. A DEM of 30 m resolution is frequently used in hydrology and soil erosion studies because the National Water Management Information System (WAMIS) provides a 30 m resolution DEM at national scale on its web site. However, the Ministry of Environment recommends the use of a DEM with 10 m resolution for evaluation of soil erosion due to the fact that soil erosion estimation is to some degree affected by the spatial resolution of DEM. In this regard, a DEM with 5 m resolution was resampled for 10 × 10 m, 20 × 20 m, 30 × 30 m, 50 × 50 m, 70 × 70 m, and 100 × 100 m resolutions, respectively. USLE LS factors and soil erosion values were evaluated using these datasets. Use of a DEM with at least 30 m resolution provided reasonable LS factors and soil erosion values at a watershed.

Analysis of Land Uses in the Nakdong River Floodplain Using RapidEye Imagery and LiDAR DEM (RapidEye 영상과 LiDAR DEM을 이용한 낙동강 범람원 내 토지 이용 현황 분석)

  • Choung, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.189-199
    • /
    • 2014
  • Floodplain is a flat plain between levees and rivers. This paper suggests a methodology for analyzing the land uses in the Nakdong River floodplain using the RapidEye imagery and the given LiDAR(LIght Detection And Ranging) DEM(Digital Elevation Models). First, the levee boundaries are generated using the LiDAR DEM, and the area of the floodplain is extracted from the given RapidEye imagery. The land uses in the floodplain are identified in the extracted RapidEye imagery by the ISODATA(Iterative Self-Organizing Data Analysis Technique Analysis) clustering. The overall accuracy of the identified land uses by the ISODATA clustering is 91%. Analysis of the identified land uses in the floodplain is implemented by counting the number of the pixels constituting the land cover clusters. The results of this research shows that the area of the river occupies 46%, the area of the bare soil occupies 36%, the area of the marsh occupies 11%, and the area of the grass occupies 7% in the identified floodplain.