• Title/Summary/Keyword: digital chest radiographs

Search Result 12, Processing Time 0.027 seconds

Automatic Anatomically Adaptive Image Enhancement in Digital Chest Radiography

  • Kim, Sung-Hyun;Lee, Hyoung-Koo;Ho, Dong-Su;Kim, Do-Il;Choe, Bo-Young;Suh, Tae-Suk
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.442-445
    • /
    • 2002
  • We present an algorithm for automatic anatomically adaptive image enhancement of digital chest radiographs. Chest images were exposed using digital radiography system with a 0.143 mm pixel pitch, l4-bit gray levels, and 3121 ${\times}$ 3121 matrix size. A chest radiograph was automatically divided into two classes (lung field and mediastinum) by using a maximum likelihood method. Each pixel in an image was processed using fuzzy domain transformation and enhancement of both the dynamic range and local gray level variations. The lung fields were enhanced appropriately to visualize effectively vascular tissue, the bronchus, and lung tissue, etc as well as pneumothorax and other lung diseases at the same time with the desired mediastinum enhancement. A prototype implementation of the algorithm is undergoing trials in the clinical routine of radiology department of major Korean hospital.

  • PDF

Imaging Characteristics of Digital Chest Radiography with an Amorphus Silicon Flat Panel Detectors (비정질 평판형 측정기를 이용한 디지털 방사선 영상의 특징)

  • Jeong, Hoi-Woun;Kim, Jung-Min;Jeong, Man-Hee;Im, Eun-Kyung
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.8 no.1
    • /
    • pp.27-32
    • /
    • 2006
  • The rapid development in digital acquisition technology in radiography has not been accompanied by information regarding optimum radiolographic technique for use with an amorphus silicon flat panel detector. The purpose of our study was to compared imaging characteristics and image quality of an amorphus silicon flat panel detectors for digital chest radiography. All examinations were performed by using an amorphus silicon flat panel detector. Chest radiographs of an chest phantom were obtained with peak kilovoltage values of 60$\sim$150 kVp. Published data ell the effect of x-ray beam energy on imaging characteristics and image qualify when using an amorphus silicon flat panel detector. It is important that radiographers are aware of optimum kVp selection for an amorphus silicon flat panel detector system, particularly for the commonly performed chest examination.

  • PDF

The Effect of X-ray Tube Potential on the Image Quality of Digital Chest Radiography with an Amorphus Silicon Flat Panel Detectors (비정질 평판형 측정기를 이용한 디지털 흉부 방사선 영상에서의 효과적인 관전압 선택)

  • Kim, Jung-Min;Im, Eun-Kyung
    • Journal of radiological science and technology
    • /
    • v.28 no.4
    • /
    • pp.273-277
    • /
    • 2005
  • The rapid development in digital acquisition technology in radiography has not been accompanied by information regarding optimum radiolographic technique for use with an amorphus silicon flat panel detector. The purpose of our study was to compared image quality and radiation dose of an amorphus silicon flat panel detectors for digital chest radiography. All examinations were performed by using an amorphus silicon flat panel detector. Chest radiographs of an chest phantom were obtained with peak kilovoltage values of $60{\sim}150kVp$. Published data on the effect of x-ray beam energy on image quality and patient dose when using an amorphus silicon flat panel detector. It is important that radiographers are aware of optimum kVp selection for an amorphus silicon flat panel detector system, particularly for the commonly performed chest examination.

  • PDF

Automatic detection of the lung orientation in digital PA chest radiographs

  • Nahm, Kie-B.
    • Journal of the Optical Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.60-64
    • /
    • 1997
  • An image processing algorithm is presented that can identify the orientation as well as the left/right side (parity) of the digitized radiographs. The orientation was found by computing the mean square deviation between the sampled gray values along the center and their best-fit linear regression relations. The parity was determined by comparing the area difference between two thresholded images of the left and the right side around the heart, which is assumed to be around the center of the image. This method was tested with 86 images with their orientations intentionally rotated. The rotation was limited to multiples of 90 degrees, as this was the way the rotation is most likely to happen in the clinical environment. We obtained positive responses for 85 out of 86 images subject to the screening.

Adaptive image enhancement technique considering visual perception property in digital chest radiography (시각특성을 고려한 디지털 흉부 X-선 영상의 적응적 향상기법)

  • 김종효;이충웅;민병구;한만청
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.8
    • /
    • pp.160-171
    • /
    • 1994
  • The wide dynamic range and severely attenuated contrast in mediastinal area appearing in typical chest radiographs have often caused difficulties in effective visualization and diagnosis of lung diseases. This paper proposes a new adaptive image enhancement technique which potentially solves this problem and there by improves observer performance through image processing. In the proposed method image processing is applied to the chest radiograph with different processing parameters for the lung field and mediastinum adaptively since there are much differences in anatomical and imaging properties between these two regions. To achieve this the chest radiograph is divided into the lung and mediastinum by gray level thresholding using the cumulative histogram and the dynamic range compression and local contrast enhancement are carried out selectively in the mediastinal region. Thereafter a gray scale transformation is performed considering the JND(just noticeable difference) characteristic for effective image displa. The processed images showed apparenty improved contrast in mediastinum and maintained moderate brightness in the lung field. No artifact could be observed. In the visibility evaluation experiment with 5 radiologists the processed images with better visibility was observed for the 5 important anatomical structures in the thorax.

  • PDF

The reduction methods of operator's radiation dose for portable dental X-ray machines

  • Cho, Jeong-Yeon;Han, Won-Jeong
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.3
    • /
    • pp.160-164
    • /
    • 2012
  • Objectives: This study was aimed to investigate the methods to reduce operator's radiation dose when taking intraoral radiographs with portable dental X-ray machines. Materials and Methods: Two kinds of portable dental X-ray machines (DX3000, Dexcowin and Rextar, Posdion) were used. Operator's radiation dose was measured with an 1,800 cc ionization chamber (RadCal Corp.) at the hand level of X-ray tubehead and at the operator's chest and waist levels with and without the backscatter shield. The operator's radiation dose at the hand level was measured with and without lead gloves and with long and short cones. Results: The backscatter shield reduced operator's radiation dose at the hand level of X-ray tubehead to 23 - 32%, the lead gloves to 26 - 31%, and long cone to 48 - 52%. And the backscatter shield reduced operator's radiation dose at the operator's chest and waist levels to 0.1 - 37%. Conclusions: When portable dental X-ray systems are used, it is recommended to select X-ray machine attached with a backscatter shield and a long cone and to wear the lead gloves.

Is a Camera-Type Portable X-Ray Device Clinically Feasible in Chest Imaging?: Image Quality Comparison with Chest Radiographs Taken with Traditional Mobile Digital X-Ray Devices (카메라형 휴대형 X선 장치는 흉부 촬영에서 임상적 사용이 가능한가?: 기존의 이동형 디지털 X선 장치로 촬영한 흉부 X선 사진과 영상품질 비교)

  • Sang-Ji Kim;Hwan Seok Yong;Eun-Young Kang;Zepa Yang;Jung-Youn Kim;Young-Hoon Yoon
    • Journal of the Korean Society of Radiology
    • /
    • v.85 no.1
    • /
    • pp.138-146
    • /
    • 2024
  • Purpose To evaluate whether the image quality of chest radiographs obtained using a camera-type portable X-ray device is appropriate for clinical practice by comparing them with traditional mobile digital X-ray devices. Materials and Methods Eighty-six patients who visited our emergency department and underwent endotracheal intubation, central venous catheterization, or nasogastric tube insertion were included in the study. Two radiologists scored images captured with traditional mobile devices before insertion and those captured with camera-type devices after insertion. Identification of the inserted instruments was evaluated on a 5-point scale, and the overall image quality was evaluated on a total of 20 points scale. Results The identification score of the instruments was 4.67 ± 0.71. The overall image quality score was 19.70 ± 0.72 and 15.02 ± 3.31 (p < 0.001) for the mobile and camera-type devices, respectively. The scores of the camera-type device were significantly lower than those of the mobile device in terms of the detailed items of respiratory motion artifacts, trachea and bronchus, pulmonary vessels, posterior cardiac blood vessels, thoracic intervertebral disc space, subdiaphragmatic vessels, and diaphragm (p = 0.013 for the item of diaphragm, p < 0.001 for the other detailed items). Conclusion Although caution is required for general diagnostic purposes as image quality degrades, a camera-type device can be used to evaluate the inserted instruments in chest radiographs.

Image Enhancement and Clinical Evaluation in Digital Chest Radiography (디지털 방사선 흉부영상의 영상개선과 임상평가)

  • Kim, Sung-Hyun;Suh, Tae-Suk;Choe, Bo-Young;Lee, Hyoung-Koo
    • Progress in Medical Physics
    • /
    • v.19 no.3
    • /
    • pp.143-149
    • /
    • 2008
  • The aim of this study is to suggest the method for image enhancement of digital chest radiograph and evaluate clinically the quality of the resultant image. A nonlinear iterative filter was developed in order to reduce quantum noise preserving edge. Dynamic range was adjusted and adaptive image enhancement was performed based on the property of anatomic region and the degree of compatibility with neighboring pixels. The lung fields were enhanced appropriately to visualize effectively vascular tissue, bronchus and lung tissue with the desired mediastinum enhancement. Clinic evaluation was performed by three radiologists with at least 8 years experience. The anatomic regions of 11 in PA and 9 in Lateral were observed carefully in each 100 radiographs according to ITU (International Telecommunication Union) recommendation 500 protocol. The result showed the mean 3.4 between good and adequate. This means that the clinical utility of the image quality is enough. In this study, image enhancement was carried out considering image display device and human perceptual system to prevent the loss of useful anatomic information. In order to increase the diagnostic accuracy in digital radiograph, the continuous study on image enhancement is needed.

  • PDF

Analysis of Image Quality According to BMI of Digital Chest Radiography: Focusing on Bureau of Radiological Health Evaluation (디지털 흉부 방사선 영상의 체질량지수에 따른 영상품질 분석: 미국 방사선 안전국 규정 평가표 중심으로)

  • Jin, Seong-jin;Im, In-Chul;Cho, Ji-Hwan
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • Visual evaluation of chest radiograph images is the most practical and effective method. This study compared the Body Mass Index, waist circumference, and mAs with chest radiographs of 351 women. The Bureau of Radiological Health method was used to evaluate the image quality of chest X-ray images by anatomical and physical methods. The average age of the subjects was $30.17{\pm}4.73$ and the average waist circumference was $66.91{\pm}4.67cm$. The mean Body Mass Index value was $20.21{\pm}2.23$, the mean value of mAs was $3.04{\pm}0.78$, and the mean value of Bureau of Radiological Health was $79.83{\pm}8.45$. When the Body Mass Index value increased, waist circumference and mAs mean value increased. The mean value of Body Mass Index was statistically significant(p<0.05) in Group 4 compared to Groups 1 and 2, with increasing Body Mass Index. Exposure control of the automatic exposure control system is considered to be well performed according to body thickness or Body Mass Index at the time of chest radiography. As the Body Mass Index increases, the thickness of the body increases and the breast thickness of the woman also increases. Therefore, it is considered that the exposure amount is changed by the automatic exposure control device to affect the image quality.