• 제목/요약/키워드: digestive enzyme hydrolyzed peptide

검색결과 3건 처리시간 0.016초

Reduction of Interlukin-8 by Peptides from Digestive Enzyme Hydrolysis of Hen Egg Lysozyme

  • Lee, MooHa;Young, Denise;Mine, Yoshinori;Jo, CheoRun
    • Food Science and Biotechnology
    • /
    • 제18권3호
    • /
    • pp.706-711
    • /
    • 2009
  • Lysozyme was treated with digestive enzymes and the production of interleukin 8 (IL-8) was measured in Caco-2 cell with the peptides from lysozyme upon stimulating with lipopolysaccharide (LPS) to investigate the overall anti-inflammatory activity of lysozyme when it is in digestive tracts. Lysozyme reduced IL-8 production, and the peptides from pepsin hydrolysis of lysozyme had the similar effect. The products of trypsin digestion of lysozyme had no effect on the reduction of IL-8 production while those of pepsin-trypsin hydrolysis did. The effectiveness of lowering IL-8 production was not different by time of the peptide addition. When Caco-2 cells were pre-incubated with peptides for 24 hr, the reduction effects were observed from the peptides from pepsin hydrolysis, indicating that some of the peptides are still remaining in the cells. Therefore, it can be concluded that the IL-8 reduction effect of lysozyme against LPS still remained even after the pepsin and trypsin hydrolysis.

멸치육 효소 가수분해물의 Angiotensin 전환효소 저해작용 (Angiotensin Converting Enzyme Inhibitory Activity in Enzymatic Hydrolysates of Anchovy Muscle Protein)

  • 이태기;박영범;박덕천;염동민;김인수;구연숙;박영호;김선봉
    • 한국수산과학회지
    • /
    • 제31권6호
    • /
    • pp.875-881
    • /
    • 1998
  • 젓갈 및 자건품으로 소비량이 많은 멸치의 기능특성해석 및 기능성 조미 소재 제조의 일환으로 단백질 분해효소에 의한 멸치 육단백질 가수분해물의 peptide-nitrogen 생성량과 ACE 저해작용을 검토하였다. 소화효소와 식품공업용 단백질분해효소를 이용한 탈지 멸치육 가수분해물의 $50\%$ ethanol 가용성 peptide-nitrogen 생성량은 반응 8시간을 전후로 하여 거의 일정수준에 도달하였고, ACE 저해효과 역시 높게 나타났다. 따라서, 가수분해 8시간째의 각 효소 가수분해물의 peptide-nitrogen의 함량과 ACE 저해효과를 검토한 결과, 소화효소의 경우, $\alpha$-chymotrypsin으로 가수분해시켰을 때, $50\%$ ethanol 가용성 peptide-nitrogen의 생성량과 ACE 저해효과가 높은 것으로 나타났다 또한, 식품공업용 단백질분해 효소를 사용한 경우는 Alcalase 0.6L를 사용하였을 때가 $50\%$ ethanol 가용성 peptide-nitrogen의 생성량 및 ACE 저해효과가 가장 우수하였고, Protamex에 의해서는 $50\%$ ethanol 가용성 peptide-nitrogen의 생성량은 적었지만, ACE 저해효과는 높게 나타났다. ACE 저해효과가 우수한 멸치육 효소 가수분해물의 $50\%$ ethanol 가용성 획분의 아미노산 조성은 대부분의 가수분해물에서 glutamic acid의 함량이 가장 많았고, 그 다음으로 aspartic acid. cysteine 및 leucine의 순이었다.

  • PDF

Analytical Methods and Effects of Bioactive Peptides Derived from Animal Products: A Mini-Review

  • Jae Won Jeong;Seung Yun Lee;Da Young Lee;Jae Hyeon Kim;Seung Hyeon Yun;Juhyun Lee;Ermie Jr. Mariano;Sung Sil Moon;Sun Jin Hur
    • 한국축산식품학회지
    • /
    • 제44권3호
    • /
    • pp.533-550
    • /
    • 2024
  • Peptides with bioactive effects are being researched for various purposes. However, there is a lack of overall research on pork-derived peptides. In this study, we reviewed the process of obtaining bioactive peptides, available analytical methods, and the study of bioactive peptides derived from pork. Pepsin and trypsin, two representative protein digestive enzymes in the body, are hydrolyzed by other cofactors to produce peptides. Bicinchoninic acid assay, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, chromatography, and in vitro digestion simulation systems are utilized to analyze bioactive peptides for protein digestibility and molecular weight distribution. Pork-derived peptides mainly exhibit antioxidant and antihypertensive activities. The antioxidant activity of bioactive peptides increases the accessibility of amino acid residues by disrupting the three-dimensional structure of proteins, affecting free radical scavenging, reactive oxygen species inactivation, and metal ion chelating. In addition, the antihypertensive activity decreases angiotensin II production by inhibiting angiotensin converting enzyme and suppresses blood pressure by blocking the AT1 receptor. Pork-derived bioactive peptides, primarily obtained using papain and pepsin, exhibit significant antioxidant and antihypertensive activities, with most having low molecular weights below 1 kDa. This study may aid in the future development of bioactive peptides and serve as a valuable reference for pork-derived peptides.