• Title/Summary/Keyword: diffusivity equation

Search Result 107, Processing Time 0.024 seconds

A Numerical Model for Wind-Induced Circulation in a Thermally Stratified Flow (수온성층흐름에서 바람에 의해 발생하는 순환흐름을 해석하기 위한 수치모형개발)

  • Lee, Jin-Woo;Kim, Hyung-Jun;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.10
    • /
    • pp.911-920
    • /
    • 2010
  • The closed water bodies, such as reservoirs and lakes, could be contaminated by an inflow of pollutants in the upstream as well as a stratification caused by seasonal natural phenomena. The vertical circulation particularly plays an important role in reduction of environmental pollutants. The factors of the vertical circulation are the temperature, wind, thermal diffusivity and sunlight. The wind is probably the most significant factor among them. Thus, it is necessary to describe the validation and application of a three-dimensional numerical model of wind-induced circulation in a thermally stratified flow. In this paper, a three-dimensional numerical model for the thermally stratified flows is presented. The model is conducted in three steps to calculate the velocity components from the momentum equations in x- and y- axis directions, the elevations from the free surface equation and the temperature from the scalar transport equation. Numerical predictions are compared with available analytical solutions for the sloshing free surface movement in a rectangular basin. The numerical results generally show a reasonable agreement with analytical solutions. And the model is applied to the circulation for the wind induced flow in a thermally stratification. Consequently, the developed model is validated by two verifications and phenomena of the internal flow.

Development of Deterioration Prediction Model and Reliability Model for the Cyclic Freeze-Thaw of Concrete Structures (콘크리트구조물의 반복적 동결융해에 대한 수치 해석적 열화 예측 및 신뢰성 모델 개발)

  • Cho, Tae-Jun;Kim, Lee-Hyeon;Cho, Hyo-Nam
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.13-22
    • /
    • 2008
  • The initiation and growth processes of cyclic ice body in porous systems are affected by the thermo-physical and mass transport properties, as well as gradients of temperature and chemical potentials. Furthermore, the diffusivity of deicing chemicals shows significantly higher value under cyclic freeze-thaw conditions. Consequently, the disintegration of concrete structures is aggravated at marine environments, higher altitudes, and northern areas. However, the properties of cyclic freeze-thaw with crack growth and the deterioration by the accumulated damages are hard to identify in tests. In order to predict the accumulated damages by cyclic freeze-thaw, a regression analysis by the response surface method (RSM) is used. The important parameters for cyclic freeze-thawdeterioration of concrete structures, such as water to cement ratio, entrained air pores, and the number of cycles of freezing and thawing, are used to compose the limit state function. The regression equation fitted to the important deterioration criteria, such as accumulated plastic deformation, relative dynamic modulus, or equivalent plastic deformations, were used as the probabilistic evaluations of performance for the degraded structural resistance. The predicted results of relative dynamic modulus and residual strains after 300 cycles of freeze-thaw show very good agreements with the experimental results. The RSM result can be used to predict the probability of occurrence for designer specified critical values. Therefore, it is possible to evaluate the life cycle management of concrete structures considering the accumulated damages due to the cyclic freeze-thaw using the proposed prediction method.

A CFD Modeling of Heat Generation and Charge-Discharge Behavior of a Li-ion Secondary Battery (Li-ion 이차전지의 충방전 시 발열 및 충방전 특성의 CFD 모델링)

  • Kang, Hyeji;Park, Hongbeom;Han, Kyoungho;Yoon, Do Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.3
    • /
    • pp.114-121
    • /
    • 2016
  • This study investigates a CFD modeling of the charge-discharge behavior due to heat generation during charge-discharge cycles of a Li-ion secondary battery(LIB). Present LIB system adopted a current-density equation, heat and mass transfer governing equations upon the 1-dimensional system to the thickness direction for the rectangular pouch configuration. According to the 3-kinds of the charge-discharge current densities of 1C($17.5A/m^2$), 3C($52.5A/m^2$) and 5C($87.5A/m^2$) subject to a 3 V of cut-off voltage, a constant-temperature system at 298 K and three different heat generating systems were analyzed with comparison. Battery capacity decreases with increment of charge-discharge densities not only at the constant-temperature system but also at the heat-generating system. The time for charge-discharge cycles increases at the heat-generating system compare to the constant-temperature system. These trends are considered that the increase of temperature due to heat generation causes the decrement of equilibrium potential of electrodes and the increment of diffusivity of Li ions. Furthermore, cooling effects were discussed in order to control the influence of heat generation due to charge-discharge behavior of a Li-ion secondary battery.

Quantification of Chloride Diffusivity in Steady State Condition in Concrete with Fly Ash Considering Curing and Crack Effect (재령 및 균열효과를 고려한 플라이애시 콘크리트의 정상상태 염화물 확산 특성의 정량화)

  • Yoon, Yong-Sik;Cheon, Ju-Hyun;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.109-115
    • /
    • 2019
  • In case of the cracks in concrete, the penetration of deterioration ions such as chloride ions in to cracks is accelerated. According to the penetration of chloride ions, structural and durability problems to RC(Reinforced Concrete) structures are caused. In this study, the accelerated chloride diffusion coefficient which is in steady state is evaluated for 2 year aged normal and high strength FA(Fly Ash) concrete, after a range of crack depths are induced up to 1.0 mm in 56 aged day. Considering crack effect by linear regression analysis, high strength concrete has slightly less increasing ratio of diffusion coefficient by crack than normal strength concrete, and diffusion coefficient increases non-linearly as crack width is increased. Also, In two types of concrete, crack effect decrease as the curing period increase. In the case of quantifying crack and curing effect by using exponential function form, the coefficients of determination are higher than those of linear regression analysis. Under steady state, it is thought that there is not a high correlation between the crack effect and the curing effect, and considering the two independent effects, it is believed that reasonable prediction equation for diffusion of concrete with crack can be proposed.

Studies on the Physical Properties of Major Tree Barks Grown in Korea -Genus Pinus, Populus and Quercus- (한국산(韓國産) 주요(主要) 수종(樹種) 수피(樹皮)의 이학적(理學的) 성질(性質)에 관(關)한 연구(硏究) -소나무속(屬), 사시나무속(屬), 참나무속(屬)을 중심(中心)으로-)

  • Lee, Hwa Hyoung
    • Journal of Korean Society of Forest Science
    • /
    • v.33 no.1
    • /
    • pp.33-58
    • /
    • 1977
  • A bark comprises about 10 to 20 percents of a typical log by volume, and is generally considered as an unwanted residue rather than a potentially valuable resourses. As the world has been confronted with decreasing forest resources, natural resources pressure dictate that a bark should be a raw material instead of a waste. The utilization of the largely wasted bark of genus Pinus, Quercus, and Populus grown in Korea can be enhanced by learning its physical and mechanical properties. However, the study of tree bark grown in Korea have never been undertaken. In the present paper, an investigative study is carried out on the bark of three genus, eleven species representing not only the major bark trees but major species currently grown in Korea. For each species 20 trees were selected, at Suweon and Kwang-neung areas, on the same basis of the diameter class at the proper harvesting age. One $200cm^2$ segment of bark was obtained from each tree at brest height. Physical properties of bark studied are: bark density, moisture content of green bark (inner-, outer-, and total-bark), fiber saturation point, hysteresis loop, shrinkage, water absorption, specific heat, heat of wetting, thermal conductivity, thermal diffusivity, heat of combustion, and differential thermal analysis. The mechanical properties are studied on bending and compression strength (radial, longitudinal, and tangential). The results may be summarized as follows: 1. The oven-dry specific gravities differ between wood and bark, further more even for a given bark sample, the difference is obersved between inner and outer bark. 2. The oven-dry specific gravity of bark is higher than that of wood. This fact is attributed to the anatomical structure whose characters are manifested by higher content of sieve fiber and sclereids. 3. Except Pinus koraiensis, the oven-dry specific gravity of inner bark is higher than that of outer bark, which results from higher shrinkage of inner bark. 4. The moisture content of bark increases with direct proportion to the composition ratio of sieve components and decreases with higher percent of sclerenchyma and periderm tissues. 5. The possibility of determining fiber saturation point is suggested by the measuring the heat of wetting. With the proposed method, the fiber saturation point of Pinus densiflora lies between 26 and 28%, that of Quercus accutissima ranges from 24 to 28%. These results need be further examined by other methods. 6. Contrary to the behavior of wood, the bark shrinkage is the highest in radial direction and the lowest in longitudinal direction. Quercus serrata and Q. variabilis do not fall in this category. 7. Bark shows the same specific heat as wood, but the heat of wetting of bark is higher than that of wood. In heat conductivity, bark is lower than wood. From the measures of oven-dry specific gravity (${\rho}d$) and moisture fraction specific gravity (${\rho}m$) is devised the following regression equation upon which heat conductivity can be calculated. The calculated heat conductivity of bark is between $0.8{\times}10^{-4}$ and $1.6{\times}10^{-4}cal/cm-sec-deg$. $$K=4.631+11.408{\rho}d+7.628{\rho}m$$ 8. The bark heat diffusivity varies from $8.03{\times}10^{-4}$ to $4.46{\times}10^{-4}cm^2/sec$. From differential thermal analysis, wood shows a higher thermogram than bark under ignition point, but the tendency is reversed above ignition point. 9. The modulus of rupture for static bending strength of bark is proportional to the density of bark which in turn gives the following regression equation. M=243.78X-12.02 The compressive strength of bark is the highest in radial direction, contrary to the behavior of wood, and the compressive strength of longitudinal direction follows the tangential one in decreasing order.

  • PDF

One dimensional diffusion of NaCl in flooded soil systems (담수(湛水) 토양계(土壤系)에서 염분(鹽分)의 일차원적(一次元的) 확산(擴散))

  • Oh, Yong-Taeg;Yoo, Sun-Ho;Jung, Yeong-Sang;Hong, Chong Woon;Park, Chun Suh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 1976
  • 1. Under an asumption that Ficks diffusion equation could be applicable in soil systems, the diffusivities of NaCl in several flooded soil systems were measured to range from $0.4{\times}10^{-5}cm^2sec^{-1}$ to $0.83{\times}10^{-5}cm^2sec^{-1}$ 2. It was discussed that, when a polder soil with a uniform initial salt content through the profile is desalinated only by diffusion to flooding water, the salt content in profile is a function of soil depth, diffusion time, and diffusivity as following $$C=C^{\circ}erf\frac{x}{\sqrt[2]{Dt}}$$ 3. On the basis of Kirkham, et al's integration of complementary erra function, the speed of desalting was discussed to be inversely proportional to the square root of time as following $$dq/dt=C^{\circ}{\sqrt{D/{\pi}t}}$$ 4. It was estimated enough to exchange the flooding water once or twice, even when desalination of polder soil is carried out only by diffusion, if the desalination begins in June, the used flooding water is fresh water, and flooding depth is 10cm. 5. Desalination of polder soil by diffusion requires 2 month for good standing of planted rice.

  • PDF

Prediction of Propylene/Propane Separation Behavior of Na-type Faujasite Zeolite Membrane by Using Gravimetric Adsorption (중량식흡착 거동에 기초한 Na형 Faujasite 제올라이트 분리막의 프로필렌/프로페인 분리 거동 예측 연구)

  • Hwang, Juyeon;Min, Hae-Hyun;Park, You-In;Chang, Jong-San;Park, Yong-Ki;Cho, Churl-Hee;Han, Moon-Hee
    • Membrane Journal
    • /
    • v.28 no.6
    • /
    • pp.432-443
    • /
    • 2018
  • In this study, propylene/propane separation behavior of Na-type faujasite zeolite membranes is predicted by observing gravimetric adsorptions of propylene and propane on zeolite 13X. The gravimetric adsorptions were measured by using a magnetic suspension balance (MSB) at temperatures of 323, 343, 363 K and a pressure range of 0.02-1 bar. The pressure was increased at 0.1 bar intervals. As adsorption temperature increased, adsorptions of propylene and propane decreased and propylene/propane adsorption selectivity increased. Also, the diffusion coefficients of propylene and propane were increased as the adsorption temperature increased, following the Arrhenius equation. The maximum propylene/propane diffusion selectivity was 0.9753 at 323 K. The perm-selectivity was calculated from the adsorption data of zeolite 13X and compared with the perm-selectivity measured in the single gas permeation experiment for the Na-type faujasite zeolite membrane. The maximum values for the calculated and measured perm-selectivities were observed at a temperature of 323 K. It could be concluded that the prediction of propylene/propane separation of surface diffusion-based membrane by using gravimetric adsorption data is reasonable. Therefore, it is expected that this prediction method can be applied to the screening of adsorption-based microporous membrane for propylene/propane separation.