• Title/Summary/Keyword: diffusion limitation

Search Result 98, Processing Time 0.026 seconds

Studies of Repeated Fed-Batch Fermentation of Cephalosporin C in an Immobilized Cell Bioreactor

  • Park, Hong-Je;Khang, Yong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.229-233
    • /
    • 1995
  • Acremonium chrysogenum was immobilized in ionotropic gel beads to develop semi-continuous production of cephalosporin C (CPC). Barium alginate beads were more stable than calcium alginate or strontium alginate beads in chemically defined media. The gel stability of Ba-alginate was further increased by cross-linking with polyethyleneimine (PEI). The presence of carboxymethyl cellulose inside Ba-alginate beads did not reduce mass transfer resistance. Ba-alginate microbeads that had little diffusion limitation increased CPC production rate 1.6 fold higher than that of normal beads. CPC fermentation with immobilized cells in Ba-alginate microbeads was performed continuously for 40 days by way of repeated fed-batch operations. Mathematical modeling was developed to describe the repeated fed-batch fermentation system. Results of the computer simulation agreed well with the experimental data, which made it possible to predict an optimal feeding rate that could maximize total CPC productions.

  • PDF

Biosorption Characteristics of Heavy Metal in the Continuous Reactor Packed with Agar Immobilized Algae, Spirulina (연속반응기에서 Agar를 담체로 고정한 조류 Spirulina의 중금속 흡착특성)

  • 신택수;연익준;김재용
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.1
    • /
    • pp.174-184
    • /
    • 1998
  • Biosorption characteristics were investigated to discuss the use of agar entrapped Spirulina to remove of heavy metal ions from polluted waters. Agar immobilized algae were used as bioadsorbent in continuous reactor for heavy metal ions removal. The process solution contains Pb, Cu, and Cd as single ion and binary ions. In the adsorption of single heavy metal ions by agar immobilized Spirulina, the adsorption reached within 1hr and observed diffusion limitation differed from the free algal cell adsorption. The optimum pH for the adsorption of heavy metals was 4.5 but the influence of pH decreased less than that of free algal cell. Also, the adsorption characteristics of single heavy metal ions with agar immobilized Spirulina fitted the BET isotherm. Both of experiments of free algal cell and agar immobilized algae showed higher removal efficiency in the single ion solutions than binary ions solutions. The experimental results in the packed column with agar immobilized algae were over 90% of removal efficiency for the Pb, Cu, and Cd in single ion solutions.

  • PDF

Oscillometry-Defined Small Airway Dysfunction in Patients with Chronic Obstructive Pulmonary Disease

  • Amit K. Rath;Dibakar Sahu;Sajal De
    • Tuberculosis and Respiratory Diseases
    • /
    • v.87 no.2
    • /
    • pp.165-175
    • /
    • 2024
  • Background: The prevalence of small airway dysfunction (SAD) in patients with chronic obstructive pulmonary disease (COPD) across different ethnicities is poorly understood. This study aimed to estimate the prevalence of SAD in stable COPD patients. Methods: We conducted a cross-sectional study of 196 consecutive stable COPD patients. We measured pre- and post-bronchodilator (BD) lung function and respiratory impedance. The severity of COPD and lung function abnormalities was graded in accordance with the Global Initiative for Chronic Obstructive Lung Disease (GOLD) guidelines. SAD was defined as either difference in whole-breath resistance at 5 and 19 Hz > upper limit of normal or respiratory system reactance at 5 Hz < lower limit of normal. Results: The cohort consisted of 95.9% men, with an average age of 66.3 years. The mean forced expiratory volume 1 second (FEV1) % predicted was 56.4%. The median COPD assessment test (CAT) scores were 14. The prevalence of post-BD SAD across the GOLD grades 1 to 4 was 14.3%, 51.1%, 91%, and 100%, respectively. The post-BD SAD and expiratory flow limitation at tidal breath (EFLT) were present in 62.8% (95% confidence interval [CI], 56.1 to 69.9) and 28.1% (95% CI, 21.9 to 34.2), respectively. COPD patients with SAD had higher CAT scores (15.5 vs. 12.8, p<0.01); poor lung function (FEV1% predicted 46.6% vs. 72.8%, p<0.01); lower diffusion capacity for CO (4.8 mmol/min/kPa vs. 5.6 mmol/min/kPa, p<0.01); hyperinflation (ratio of residual volume to total lung capacity % predicted: 159.7% vs. 129%, p<0.01), and shorter 6-minute walk distance (367.5 m vs. 390 m, p=0.02). Conclusion: SAD is present across all severities of COPD. The prevalence of SAD increases with disease severity. SAD is associated with poor lung function and higher symptom burden. Severe SAD is indicated by the presence of EFLT.

Heterojunction Quantum Dot Solar Cells Based on Vertically Growth TiO2 Anatase Nanorod Arrays with Improved Charge Collection Property

  • Chung, Hyun Suk;Han, Gill Sang;Park, So Yeon;Lee, Dong Geon;Jung, Hyun Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.466.2-466.2
    • /
    • 2014
  • The Quantum dot (QD) solar cells have been under active research due to their high light harvesting efficiencies and low fabrication cost. In spite of these advantages, there have been some problems on the charge collection due to the limitation of the diffusion length. The modification of advanced nanostructure is capable of solving the charge collection problem by increasing diffusion length of electron. One dimensional nanomaterials such as nanorods, nanowires, and nanotubes may enhance charge collection efficiency in QD solar cells. In this study, we synthesized $TiO_2$ anatase nanorod arrays with length of 200 nm by two-step sol-gel method. The morphology and crystal structure for the nanorod were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The anatase nanorods are single-crystalline and possess preferred orientation along with (001) direction. The photovoltaic properties for the heterojunction structure QD solar cells based on the anatase nanorod were also characterized. Compared with conventional $TiO_2$ nanoparticle based QD solar cells, these nanostructure solar cells exhibited better charge collection properties due to long life time measured by transient open circuit studies. Our findings demonstrate that the single crystalline anatase nanorod arrays are promising charge transport semiconductors for heterojunction QD solar cells.

  • PDF

Parametric Imaging with Respiratory Motion Correction for Contrast-Enhanced Ultrasonography (조영증강 초음파 진단에서 호흡에 의한 흔들림을 보정한 파라미터 영상 생성 기법)

  • Kim, Ho-Joon;Cho, Yun-Seok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.2
    • /
    • pp.69-76
    • /
    • 2020
  • In this paper, we introduce a method to visualize the contrast diffusion patterns and the dynamic vascular patterns in a contrast-enhanced ultrasound image sequence. We present an imaging technique to visualize parameters such as contrast arrival time, peak intensity time, and contrast decay time in contrast-enhanced ultrasound data. The contrast flow pattern and its velocity are important for characterizing focal liver lesions. We propose a method for representing the contrast diffusion patterns as an image. In the methods, respiratory motion may degrade the accuracy of the parametric images. Therefore, we present a respiratory motion tracking technique that uses dynamic weights and a momentum factor with respect to the respiration cycle. Through the experiment using 72 CEUS data sets, we show that the proposed method makes it possible to overcome the limitation of analysis by the naked eye and improves the reliability of the parametric images by compensating for respiratory motion in contrast-enhanced ultrasonography.

Analytical Solutions for Predicting Movement Rate of Submerged Mound (수중둔덕의 이동율 예측을 위한 해석해)

    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.4
    • /
    • pp.165-173
    • /
    • 1998
  • Analytical solutions to predict the movement rate of submerged mound are derived using the convection coefficient and the joint distribution function of wave heights and periods. Assuming that the sediment is moved onshore due to the velocity asymmetry of Stokes' second order nonlinear wave theory, the micro-scale bedload transport equation is applied to the sediment conservation. The nonlinear convection-diffusion equation can then be obtained which governs the migration of submerged mound. The movement rate decreases exponentially with increasing the water depth, but the movement rate tends to increase as the spectral width parameter, $ u$ increases. In comparison of the analytical solution with the measured data, it is found that the analytical solution overestimates the movement rate. However, the agreement between the analytical solution and the measured data is encouraging since this over-estimation may be due to the inaccuracy of input data and the limitation of sediment transport model. In particular, the movement rates with respect to the water depth predicted by the analytical solution are in very good agreement with the estimated result using the discritization technique with the hindcast wave data.

  • PDF

Design and Prediction of Three Dimensional Flows in a Low Speed Highly Loaded Axial Flow Fan

  • Liu, Xuejiao;Chen, Liu;Dai, Ren;Yang, Ailing
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.2
    • /
    • pp.94-104
    • /
    • 2013
  • This paper describes the design to increase the blade loading factor of a low speed axial flow fan from normal 0.42 to highly loaded 0.55. A three-dimensional viscous solver is used to model the flows in the highly-loaded and normal loaded stages over its operation range. At the design point operation the static pressure rise can be increased by 20 percent with a deficit of efficiency by 0.3 percent. In the highly loaded fan stage, the rotor hub flow stalls, and separation vortex extends over the rotor hub region. The backflow, which occurs along the stator hub-suction surface, changes the exit flow from the prescribed axial direction. Results in this paper confirm that the limitation of the two dimensional diffusion does not affect primarily on the fan's performance. Highly loaded fan may have actually better performance than its two dimensional design. Three dimensional designing approaches may lead to better highly loaded fan with controlled rotor hub stall.

Design, Optimization and Validation of Genomic DNA Microarrays for Examining the Clostridium acetobutylicum Transcriptome

  • Alsaker, Keith V.;Paredes, Carlos J.;Papoutsakis, Eleftherios T.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.5
    • /
    • pp.432-443
    • /
    • 2005
  • Microarray technology has contributed Significantly to the understanding of bacterial genetics and transcriptional regulation. One neglected aspect of this technology has been optimization of microarray-generated signals and quality of generated information. Full genome microarrays were developed for Clostridium acetobutylicum through spotting of PCR products that were designed with minimal homology with all other genes within the genome. Using statistical analyses it is demonstrated that Signal quality is significantly improved by increasing the hybridization volume. possibly increasing the effective number of transcripts available to bind to a given spot, while changes in labeled probe amounts were found to be less sensitive to improving signal quality. In addition to Q-RT-PCR, array validation was tested by examining the transcriptional program of a mutant (M5) strain lacking the pSOL1 178-gene megaplasmid relative to the wildtype (WT) strain. Under optimal conditions, it is demonstrated that the fraction of false positive genes is 1% when considering differentially expressed genes and 7% when considering all genes with signal above background. To enhance genomic-scale understanding of organismal physiology, using data from these microarrays we estimated that $40{\sim}55%$ of the C. acetobutylicum genome is expressed at any time during batch culture, similar to estimates made for Bacillus subtilis.

The Program Evaluation and Analysis of Creative Research Initiatives (창의적연구진흥사업 사업평가 및 분석)

  • 변명문
    • Journal of Technology Innovation
    • /
    • v.12 no.1
    • /
    • pp.161-188
    • /
    • 2004
  • The objective of this research is to evaluate the Creative Research Initiative Program (CRI), a national R&D program funded by the Ministry of Science & Technology in Korea. The evaluation of CRI covers the following research questions; 1) Have it set a unique position and characteristic distinguished from other government-funded R&D programs\ulcorner 2) Are the achievements of the program relevant to its goal\ulcorner 3) What is its performances and how much is it achieved its goal\ulcorner The results are the followings; 1) CRI is perceived as a pure basic research, distinguished from other national basic research programs, such as the Coal Oriented Basic Research Program and the SRC and ERC. 2) CRI is a well-adapted R&D program in confront of the environmental changes and R&D needs, as well as follows the planned R&D areas. 3) CRI have performed well in the raising-up world-class research leaders and the nation-wide diffusion of creative R&D culture, while it got few performances in the overcoming the limitation of the existing technologies and the independent development of original key technologies for future industries. However, the duration of the program, 5 year, is too short to expect concrete outcome, such as creating original technologies. Many of the outcomes of CRI gets a lot of attention from top class scientists in the world, it is expected to generate various R&D performances in the future.

  • PDF

THE EFFECT OF OXYGEN ON PERCHLORATE REDUCTION IN A BIOFILM REACTOR

  • Choi, Hyeok-Sun
    • Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.148-154
    • /
    • 2007
  • The purpose of this research was to investigate the effects of low concentration of oxygen on reduction of perchlorate, especially low perchlorate influent concentrations in a biofilm reactor, as well as the effect of flow pattern in a biofilm reactor. Dissolved oxygen averaging 1 mg/L did not inhibit reduction of influent perchlorate from 23 to $426\;{\mu}g/L$ in the biofilm reactors when sufficient acetate was added, probably due to limitation of oxygen diffusion into the biofilm. Influent perchlorate ranging from 23 to $426\;{\mu}g/L$ was reduced to below detection level ($4\;{\mu}g/L$) in the presence of 1 mg/L dissolved oxygen (DO). Chloride was produced in a ratio of $0.37gCl^-/g{ClO_4}^-$ and $0.35gCl^-/g{ClO_4}^-$ in plug flow and recirculation biofilm reactor which is similar to stoichiometric amount ($0.36gCl^-/g{ClO_4}^-$) indicating complete perchlorate reduction at $426\;{\mu}g/L$ of ${ClO_4}^-$ feeding. At $23\;{\mu}g/L$L influent perchlorate, total biomass solids were 3.18 g and 2.81 g in the plug flow and recirculation biofilm reactors. The most probable number(MPN) analysis for perchlorate-reducing bacteria showed $10^4$ to $10^5\;cells/cm^2$ in both biofilm reactors throughout the experiments. The effluent perchlorate concentrations were not significantly different in the two different flow regimes, plug flow and recirculation biofilm reactors.