• 제목/요약/키워드: diffusion flame

검색결과 558건 처리시간 0.034초

미소중력 환경내의 벽면 근방 확산 화염 특성에 관한 수치 해석 (Numerical Simulation on Characteristics of Laminar Diffusion Flame Placed Near Wall in Microgravity Environment)

  • 최재혁;후지타 오사무
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권1호
    • /
    • pp.140-149
    • /
    • 2006
  • Characteristics of a laminar diffusion flame placed near wall in microgravity have been numerically analyzed in a two-dimension. The fuel for the flame is $C_2H_4$. The flame is initiated by imposing a high temperature ignition source. The flow field, temperature field, and flame shape in microgravity diffusion flame are detailed. Especially, effects of surrounding air velocity and fuel injection velocity on the microgravity diffusion flame have been discussed accounting for standoff distance. And, the effect of curvature rate has been also studied. The results showed that velocities in a diffusion flame were overshoot because of volumetric expansion and distribution of temperature showed regularity by free-buoyancy This means that the diffusion flame in microgravity is very stable, while the flame in normal gravity is not regular and unstable due to buoyancy. Standoff distance decreases with increase in surrounding air velocity and with decrease in fuel injection velocity. With increasing curvature rate, the position of reaction rate moves away the wall.

이중 확산 연소장에서의 오염물질 배출 특성 (Pollutant Emission Characteristics of Double-Concentric Diffusion Flame)

  • 김종현;이근오;이창언
    • 한국안전학회지
    • /
    • 제17권3호
    • /
    • pp.43-49
    • /
    • 2002
  • The NOx emission characteristics of double-concentric diffusion flames and normal diffusion flames fueled with CH$_4$ were studied. Experimental and numerical investigations were carried out for double-concentric diffusion flame with varying central air flow rate and normal diffusion flame. The Emission indices of NOx(EINOx) were measured by chemiluminescent method and calculated by numerical model based on detailed chemistry. From the comparison between double-concentric diffusion flames and normal diffusion flames, the results show that EINOx of double-concentric diffusion flames are lower than normal diffusion flame, because of Prompt EINOx was decreased. EINOx of double-concentric diffusion flames increase with central air flow rate increasing.

동축 이중 확산화염의 매연 생성 특성 (Soot Formation in a Double-Concentric Diffusion Flame)

  • 정종수;이교우;고범승;강경태
    • 대한기계학회논문집B
    • /
    • 제23권11호
    • /
    • pp.1355-1362
    • /
    • 1999
  • An experimental study on a double-concentric diffusion flame(DDF) has been carried on in order to Investigate the characteristics of soot formation compared to a normal coflow diffusion flame(NDF). Laser extinction technique has been used for an ethylene($C_2H_4$) and air flame with various flow rates. Soot formation In the double-concentric diffusion flame was enhanced by the inner inverse diffusion flame due to the increase in flame temperature and also suppressed due to the nitrogen-dilution from the inner air. Soot concentration at the flame axis of DDF was higher than that of the NDF, mainly because of the increase of temperature by inner flame. However, the maximum soot volume fraction of DDF was lower than NDF at the outer side of the flame, mainly due to the effect of nitrogen-dilution from the inner air.

전개확산제트화염과 정체점 확산화염과의 유사성 (Similarity between a stagnant point diffusion flame and an evolving jet diffusion flame)

  • 박정;신현동
    • 대한기계학회논문집B
    • /
    • 제21권4호
    • /
    • pp.494-502
    • /
    • 1997
  • Experiments on corresponding jet flames with stagnant point diffusion flames have been carried out in initial injection periods. A compensated measurement of maximum flame temperature, which is based on the ion signal, has been employed to inspect flame responses to time-varying strain rates. The flame responses are obtained at two conditions for the slowly time-varying strain rate and the case of flame extinction, and analyzed to confirm similarity between a stagnant point diffusion flame and an evolving jet diffusion flame. Nonsteady effects are addressed via the comparison between several time scales. The time variation with low strain rates, in which illustrates the flame behavior of the upper branch far from extinction in the well-known S-curve, is confirmed to produce a quasi-steady flame response through the nonsteady experiments. The time variation with strain rates in the case of flame extinction indicates an unsteady effect of flame response. It is therefore found that the flame responses near jet tip depend on time histories of characterized strain rates in the developing process.

제트확산화염과 예혼합화염의 다양한 속도 섭동에 대한 응답 특성 (A Study on Response Characteristics of Jet-diffusion Flame and Premixed Flame with Various Velocity Perturbations)

  • 안명근;김태성;김희동;윤영빈
    • 한국연소학회지
    • /
    • 제22권2호
    • /
    • pp.19-26
    • /
    • 2017
  • An experimental study investigates the flame response characteristics of jet-diffusion flame and premixed flame. The experiment was conducted while varying the amplitude. Flame lengths were quantified for OH chemiluminescence measurement and compared with the result of the flame transfer function. Flame length and flame velocity perturbation were normalized and compared with the result of the flame transfer function. The comparison results appear that velocity perturbation and flame length oscillation of premixed flame show linear behaviors on the other hand jet-diffusion flame, amplitudes are more thant 0.20, shows nonlinear behaviors of flame velocity perturbation and flame length oscillation.

급속 삽입법에 의한 화염 내부 온도 분포 측정 (Temperature Measurement in Concentric Diffusion Flames by Rapid Insertion Technique)

  • 이교우;정영록;정종수
    • 한국연소학회지
    • /
    • 제4권2호
    • /
    • pp.75-83
    • /
    • 1999
  • The effect of temperature distributions on soot volume fraction in double-concentric diffusion flames have been investigated experimentally. Using fine thermocouple wires and a rapid insertion mechanism, we have measured temperature without the effect of soot particles attached to the thermocouple junction, which can lower the temperature signal about 100 K by increasing the heat loss from the junction by radiation. The temperature at the flame axis is higher in the double-concentric diffusion flames than in normal co-flow diffusion flames because of the inverse diffusion flame. However, it is almost the same as that at the periphery of normal flames, on which the inverse flame does not have an effect. Thus, the lower soot concentration found in the double-concentric diffusion flame can be explained by the effect of nitrogen diffusion from the central air jet.

  • PDF

제트 확산화염구조에 대한 FDS 연소모델의 예측성능 비교 연구 (A Comparison Study of the Prediction Performance of FDS Combustion Model for the Jet Diffusion Flame Structure)

  • 박은정;오창보
    • 한국안전학회지
    • /
    • 제25권3호
    • /
    • pp.22-27
    • /
    • 2010
  • A prediction performance of Fire Dynamics Simulator(FDS) developed by NIST for the diffusion flame structure was validated with experimental results of a laminar slot jet diffusion flame. Two mixture fraction combustion models and two finite chemistry combustion models were used in the FDS simulation for the validation of the jet diffusion flame structure. In order to enhance the prediction performance of flame structure, DNS and radiation model was applied to the simulation. The reaction rates of the finite chemistry combustion models were appropriately adjusted to the diffusion flame. The mixture fraction combustion model predicted the diffusion flame structure reasonably. A 1-step finite chemistry combustion model cannot predict the flame structure well, but the simulation results of a 2-step model were in good agreement with those of experiment except $CO_2$ concentration. It was identified that the 2-step model can be used in the investigation of flame suppression limit with further adjustment of reaction rates

역확산화염에서 부상 상태의 진동현상에 관한 연구 (The Periodic Motion of Lifted Flames in Inverse Coflow Jets)

  • 원장혁;서정일;배수호;신현동
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.73-78
    • /
    • 2006
  • The lifted oscillating flame has been studied using experiments of inverse diffusion flames that the air jet injected into a methane background. To find out the characteristics of inverse diffusion flames, fundamentally flame stabilized diagram is investigated with various air and fuel jet velocities. It has five regions - flame extinction, stable attached flame, anchored flame, liftoff flame and blow off region. In inverse diffusion flame, lifted flames were observed near the blow off region. As long as flames lift off, flames oscillate by periods. In this oscillating lifted flame region, the frequency of 1 and under were observed in various air and methane jet velocities. Characteristics of lifted flames are also examined by using the ICCD direct image. And intensity of flame chemiluminescence is very different in rising and falling period from photographs. For the present, it is predicted that the changes of flame structure are related with flame oscillation, but more experiments will be needed to make clear the phenomenon.

  • PDF

층류확산화염의 불안정성에 대한 매연생성 특성의 역할 (Soot Formation Characteristics on the Instability of Laminar Diffusion Flames)

  • 남연우;이원남
    • 한국연소학회지
    • /
    • 제15권3호
    • /
    • pp.74-81
    • /
    • 2010
  • In this study, soot formation characteristics on the instability of laminar diffusion flames were investigated experimentally using a concentric co-flow burner. When a small amount of air was supplied through an inner nozzle, a stable propane laminar diffusion flame became unstable and began to oscillate mainly due to the dilution effect. The increase of air flow rate transformed an oscillating non-sooting flame into a stable nonsooting flame. When the air flow rate was continuously increased an inner flame was formed and the flame was changed to an oscillating sooting flame, an oscillating non-sooting flame and finally a stable non-sooting hollow flame. When the air flow rate was decreased, a non-sooting hollow flame was eventually changed back to a stable non-sooting flame. The presence of an inner flame, however, altered the soot formation characteristics of a flame. More soot production was observed with the presence of an inner flame. The increased or decreased soot formation/oxidation rates, the radiation heat loss, and the heating effect of inner flames are most likely to be responsible for the observed instability of laminar diffusion flames.

Combustion and Radiation Characteristics of Oxygen-Enhanced Inverse Diffusion Flame

  • Hwang, Sang-Soon;Gore, Jay-P
    • Journal of Mechanical Science and Technology
    • /
    • 제16권9호
    • /
    • pp.1156-1165
    • /
    • 2002
  • The characteristics of combustion and radiation heat transfer of an oxygen-enhanced diffusion flame was experimentally analyzed. An infrared radiation heat flux gauge was used to measure the thermal radiation of various types of flames with fuel, air and pure oxygen. And the Laser Induced Incandescence (LII) technique was applied to characterize the soot concentrations which mainly contribute to the continuum radiation from flame. The results show that an oxygen-enhanced inverse diffusion flame is very effective in increasing the thermal radiation compared to normal oxygen diffusion flame. This seems to be caused by overlapped heat release rate of double flame sheets formed in inverse flame and generation of higher intermediate soot in fuel rich zone of oxygen-fuel interface, which is desirable to increase continuum radiation. And the oxygen/methane reaction at slight fuel rich condition (ø=2) in oxygen-enhanced inverse flame was found to be more effective to generate the soot with moderate oxygen availability.