• Title/Summary/Keyword: diffuser

Search Result 790, Processing Time 0.035 seconds

Particle image velocimetry measurement of complex flow structures in the diffuser and spherical casing of a reactor coolant pump

  • Zhang, Yongchao;Yang, Minguan;Ni, Dan;Zhang, Ning;Gao, Bo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.368-378
    • /
    • 2018
  • Understanding of turbulent flow in the reactor coolant pump (RCP) is a premise of the optimal design of the RCP. Flow structures in the RCP, in view of the specially devised spherical casing, are more complicated than those associated with conventional pumps. Hitherto, knowledge of the flow characteristics of the RCP has been far from sufficient. Research into the nonintrusive measurement of the internal flow of the RCP has rarely been reported. In the present study, flow measurement using particle image velocimetry is implemented to reveal flow features of the RCP model. Velocity and vorticity distributions in the diffuser and spherical casing are obtained. The results illuminate the complexity of the flows in the RCP. Near the lower end of the discharge nozzle, three-dimensional swirling flows and flow separation are evident. In the diffuser, the imparity of the velocity profile with respect to different axial cross sections is verified, and the velocity increases gradually from the shroud to the hub. In the casing, velocity distribution is nonuniform over the circumferential direction. Vortices shed consistently from the diffuser blade trailing edge. The experimental results lend sound support for the optimal design of the RCP and provide validation of relevant numerical algorithms.

The Starting Behaviour of a Supersonic Ejector Equipped with a Converging-Diverging Diffuser (축소 팽창 디퓨저가 장착된 초음속 이젝터의 시동 특성)

  • Park GeunHong;Kim SeHoon;Jin JungKun;Kwon SeJin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.70-77
    • /
    • 2005
  • An axisymmetric supersonic ejector equipped with a converging-diverging diffuser was built and pressure at various locations along the ejector-diffuser system was recorded with emphasis on the supersonic starting of the secondary flow. In order to find the effects of the opening size of the secondary flow, a number of openings were used with a constant primary pressure. Supersonic starting was possible only for d/D, the ratio of the opening diameter and the diffuser throat diameter, less than 0.306. for larger values of d/D, the ejection begins at subsonic secondary flow condition. With the closure of the opening, the primary flow brings the normal shock downstream of the converging-diverging diffuser And the starting of the ejector continues even after the closure was removed.

Research on non-uniform pressure pulsation of the diffuser in a nuclear reactor coolant pump

  • Zhou, Qiang;Li, Hongkun;Pei, Lin;Zhong, Zuowen
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.1020-1028
    • /
    • 2021
  • The nuclear reactor coolant pump transferring heat energy inherently brings with it the unsteady flow and inevitably threatens to the safe operation of the pump unit, especially with the pressure pulsation induced by the rotor-stator interaction. In this paper, the characteristics of pressure pulsation of the diffuser in a nuclear reactor coolant pump were investigated by the numerical simulation with experimental validation. Pressure pulsation signals measured synchronously from sensors mounted on the radial diffuser of a model pump were analyzed via Welch's method. Frequency components induced by the rotor-stator interaction can be revealed by the diameter mode analysis method. The pressure pulsation of the diffuser is dominated by the blade passing frequency and its harmonics, which are free from the effect of flow rate and rotational speed while the corresponding amplitudes are easily affected by different operational conditions and measuring positions. The non-uniformity is much more affected by the rotational speed than the flow rate. This research is helpful for further work to reduce the pressure pulsation for the reactor coolant pump.

Optimization of the Emitting Structure of Flat Fluorescent Lamps for LCD Backlight Applications

  • Park, Ji-Hee;Ko, Jae-Hyeon
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.3
    • /
    • pp.118-123
    • /
    • 2007
  • The emitting structure of multi-channel-type flat fluorescent lamps (FFLs) combined by a lenticular-lens-patterned diffuser plate was optimized by the ray tracing technique. The optimal parameters such as the distance between the channels of the FFL and the distance between the FFL and the diffuser plate were suggested from the viewpoint of the luminance uniformity. The best luminance uniformity, which was higher than 90%, was obtained at the channel distance of 4 mm and the distance of 12.5 mm between the FFL and the patterned diffuser plate.

Analysis of impeller exit condition using a modified Stanitz equation in a centrifugal refrigerant compressor (예측수정된 Stanitz 방정식을 이용한 임펠러 출구 조건 해석)

  • Jeong, J.;Kim, C.D.;Lee, H.K.;Lee, Y.D.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.61-68
    • /
    • 1999
  • We have measured pressure distributions within the diffuser and pressures at the inlet and outlet of the compressor in orde to match impeller and low-solidity diffuser of 500RT centrifugal refrigerant-compressor which has been developed in LG Cable Ltd. Modified Stanitz equation is used to predict the measured data by tuning several parameters and then is validated. Using the validated parameters and modified Stanitz equation, we have obtained data necessary to design the diffuser.

  • PDF

Development of a Performance Prediction Method for Centrifugal Compressor Channel Diffusers

  • Kang, Jeong-Seek;Cho, Sung-Kook;Kang, Shin-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1144-1153
    • /
    • 2002
  • A hybrid performance prediction method is proposed in the present study. A channel diffuser is divided into four subregions: vaneless space, semi-vaneless space, channel, and channel exit region. One-dimensional compressible core flow and boundary layer calculation of each region with an incidence loss model and empirical correlation of residuary pressure recovery coefficient of a channel predict the performance of diffusers. Three channel diffusers are designed and tested for validating the developed prediction method. The pressure distributions from an impeller exit to the channel diffuser exit are measured and discussed for various operating conditions from choke to nearly surge conditions. The strong non-uniform pressure distribution which is caused by impeller-diffuser interaction is obtained over the vaneless and semi-vaneless spaces. The predicted performance shows good agreement with the measured performance of diffusers at a design condition as well as at off-design conditions.

A Study on the Improvement of Ventilation Effectiveness in High-rise Apartment Buildings (초고층 공동주택의 환기효율 개선에 관한 연구)

  • Park, Jin-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.2
    • /
    • pp.87-94
    • /
    • 2006
  • The efficiency of ventilation system is one of the most important issues of designing ventilation in high-rise apartment buildings. The purpose of this study is to analyze the ventilation efficiency of ventilation system by experimental study using CO2 gas method. The results of this paper can be summarized as follows; (1) An appropriate ventilation including opening planning, mechanical and hybrid system are required. (2) The supply diffuser of ventilation system should be located near the contaminant source. (3) The return grill should be located along with supply diffuser for proper ventilation. and the return grill should be located near or right above the contaminant source. (4) However, the supply location right above the contaminant source has to be avoided. and the supply diffuser should be installed in module with return grill increase ventilation effectiveness.

Thermal Analysis of Exhaust Diffuser Cooling Channels for High Altitude Test of Rocket Engine (로켓엔진 고공환경 모사용 디퓨져의 냉각 채널 열 해석)

  • Cho, Kie-Joo;Kim, Yong-Wook;Kan, Sun-Il;Oh, Seung-Hyub
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.193-197
    • /
    • 2010
  • Water cooling ducts are installed in the exhaust diffuser for high altitude tests of rocket engine to protect diffuser from high-temperature combustion gas. The mass flow rate and pressure of cooling water is designed to prevent boiling of cooling water in the ducts. Therefore, the estimation of maximum temperature of duct wall is important parameter in design of cooling system, especially pressure of cooling water. The method for predicting maximum temperatures of duct walls with variation of coolant flow rates was derived theoretically.

Experimental Study on the Performance Characteristics of the Diffuser as a Relation of the Variation of Vane Turning Angle (베인 회전각의 변화에 따른 디퓨저의 성능특성에 관한 실험적 연구)

  • Cho, Sung-Kook;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.2 s.3
    • /
    • pp.74-80
    • /
    • 1999
  • Recently, impressive gains of performance and efficiency with apparently little or no loss in flow range have been seen with the use of LSVD(Low Solidity Vaned Diffuser) over vaneless diffuser. Experiments of the effects of the vane turning angle variations(positive, negative, zero), with the other design parameters fixed, on the performance and flow range were carried out. Diffusers with a zero turning angle have the best characteristics in terms of performance and efficiency and the FFT results show different frequency characteristics due to vane turning angles in low flow range.

  • PDF

CFD modelling and the development of the diffuser augmented wind turbine

  • Phillips, D.G.;Richards, P.J.;Flay, R.G.J.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.267-276
    • /
    • 2002
  • Research being undertaken at the University of Auckland has enabled Vortec Energy to improve the performance of the Vortec 7 Diffuser Augmented Wind Turbine. Computational Fluid Dynamic (CFD) modelling of the Vortec 7 was used to ascertain the effectiveness of geometric modifications to the Vortec 7. The CFD work was then developed to look at new geometries, and refinement of these led to greater power augmentation for a given diffuser exit area ratio. Both full scale analysis of the Vortec 7 and a wind tunnel investigation of the development design have been used for comparison with the CFD model.