• Title/Summary/Keyword: diffraction limit

Search Result 142, Processing Time 0.026 seconds

Super-Resolution Optical Fluctuation Imaging Using Speckle Illumination

  • Kim, Min-Kwan;Park, Chung-Hyun;Park, YongKeun;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.403.1-403.1
    • /
    • 2014
  • In conventional far-field microscopy, two objects separated closer than approximately half of an emission wavelength cannot be resolved, because of the fundamental limitation known as Abbe's diffraction limit. During the last decade, several super-resolution methods have been developed to overcome the diffraction limit in optical imaging. Among them, super-resolution optical fluctuation imaging (SOFI) developed by Dertinger et al [1], employs the statistical analysis of temporal fluorescence fluctuations induced by blinking phenomena in fluorophores. SOFI is a simple and versatile method for super-resolution imaging. However, due to the uncontrollable blinking of fluorophores, there are some limitations to using SOFI for several applications, including the limitations of available blinking fluorophores for SOFI, a requirement of using a high-speed camera, and a low signal-to-noise ratio. To solve these limitations, we present a new approach combining SOFI with speckle pattern illumination to create illumination-induced optical fluctuation instead of blinking fluctuation of fluorophore.. This technique effectively overcome the limitations of the conventional SOFI since illumination-induced optical fluctuation is possible to control unlike blinking phenomena of fluorophore. And we present the sub-diffraction resolution image using SOFI with speckle illumination.

  • PDF

Research on the Technology of Alternative Continuous Wide Spectral Spatial Heterodyne Spectrometer

  • Zhang, Wenli;Tian, Fengchun;Zhao, Zhenzhen;Song, An;Zhang, Li
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.295-307
    • /
    • 2017
  • An innovative system for the alternative continuous wide spectral spatial heterodyne spectrometer (ACWS-SHS) is proposed. The relationship between the ACWS-SHS and the wide spectral spatial heterodyne spectrometer (WS-SHS) at the resolution limit, the spectral range, the grating diffraction efficiency and the interference fringes contrast ratio has been analyzed theoretically. Through the comparison of the theoretical analysis and simulation results, it is found that the two systems for the WS-SHS and the ACWS-SHS have the same resolution limit and spectral range, which are ${\delta}{\sigma}$ and ${\sigma}_{01}$, while in the ACWS-SHS system the critical diffraction efficiency of echelle grating is 68.39% and the critical contrast ratio of interference fringes is 0.4135, which is much better than the performance of the WS-SHS system. Therefore, the ACWS-SHS reduces the high requirements for the precision of equipment and expands the application field of SHS effectively.

Theory and Application of Near-field Scanning Optical Microscope (광근접장 현미경의 원리 및 응용)

  • 윤형길;이준희;권대갑
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.46-52
    • /
    • 2000
  • 산업사회가 발전하면서 초정밀 분야의 측정기술 또한 시대적 요구에 걸맞게 발전을 거듭하고 있다. 광을 이용한 측정기술에 있어서 보다 작은광 스팟의 구현은 높은 분해능을 위해서 필수 불가결한 조건이며, 광 기록분야에 있어서는 높은 기록밀도를 위해 핵심적인 기술이다. 하지만 스팟의 직경은 광의 회절한계(diffraction limit)에 의한 최소치를 갖는다. 예로서, 측정을 위한 광학 현미경 중 현재 일반적으로 널리 쓰이는 고배율 광학 현미경(high resolution optical microscope)은 측정 대상 표면에 물리적 손상을 주지 않으며, 측정 범위가 크고, 값이 싼 장점이 있다.(중략)

  • PDF

Fabrication technology of the Diffractive Optical Head for optical recoding information storage (광기록 정보저장용 Diffractive Optical Head 제작 연구)

  • Han, Gee-Pyeong;Kim, Tae-Youb;Sohn, Yeung-Joon;Kim, Yark-Yeon;Paek, Mun-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.992-993
    • /
    • 2002
  • We have fabricated the diffractive optical head(DOH) for optical pick up, which one adaptable to a optical recoding information storage. DOH consists of a focusing grating coupler(FGC) and a solid immersion Jens(SIL). FGC is device that the light converge into a focus by surface lattice. FGC have been studied as a potential application of pick up head for the information storage. In this study, FGC was designed and fabricated to make focus near to possible diffraction limit. We also fabricated recording head combined with SIL. The focus was measured in the range of $1.1{\mu}m$ as near to possible diffraction limit in the FGC having a focusing length of $600{\mu}m$ and a lattice area of 500 * $500{\mu}m$.

  • PDF

Super-resolution Microscopy with Adaptive Optics for Volumetric Imaging

  • Park, Sangjun;Min, Cheol Hong;Han, Seokyoung;Choi, Eunjin;Cho, Kyung-Ok;Jang, Hyun-Jong;Kim, Moonseok
    • Current Optics and Photonics
    • /
    • v.6 no.6
    • /
    • pp.550-564
    • /
    • 2022
  • Optical microscopy is a useful tool for study in the biological sciences. With an optical microscope, we can observe the micro world of life such as tissues, cells, and proteins. A fluorescent dye or a fluorescent protein provides an opportunity to mark a specific target in the crowd of biological samples, so that an image of a specific target can be observed by an optical microscope. The optical microscope, however, is constrained in resolution due to diffraction limit. Super-resolution microscopy made a breakthrough with this diffraction limit. Using a super-resolution microscope, many biomolecules are observed beyond the diffraction limit in cells. In the case of volumetric imaging, the super-resolution techniques are only applied to a limited area due to long imaging time, multiple scattering of photons, and sample-induced aberration in deep tissue. In this article, we review recent advances in super-resolution microscopy for volumetric imaging. The super-resolution techniques have been integrated with various modalities, such as a line-scan confocal microscope, a spinning disk confocal microscope, a light sheet microscope, and point spread function engineering. Super-resolution microscopy combined with adaptive optics by compensating for wave distortions is a promising method for deep tissue imaging and biomedical applications.

하이퍼볼릭 메타물질: 깊은 서브파장 나노포토닉스를 위한 신개념 플랫폼

  • No, Jun-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.78-78
    • /
    • 2015
  • Metamaterials, artificially structured nanomaterials, have enabled unprecedented phenomena such as invisibility cloaking and negative refraction. Especially, hyperbolic metamaterials also known as indefinite metamaterials have unique dispersion relation where the principal components of its permittivity tensors are not all with the same signs and magnitudes. Such extraordinary dispersion relation results in hyperbolic dispersion relations which lead to a number of interesting phenomena, such as super-resolution effect which transfers evanescent waves to propagating waves at its interface with normal materials and, the propagation of electromagnetic waves with very large wavevectors comparing they are evanescent waves and thus decay quickly in natural materials. In this abstract, I will focus discussing our efforts in achieving the unique optical property overcoming diffraction limit to achieve several extraordinary metamaterials and metadevices demonstration. First, I will present super-resolution imaging device called "hyperlens", which is the first experimental demonstration of near- to far-field imaging at visible light with resolution beyond the diffraction limit in two lateral dimensions. Second, I will show another unique application of metamaterials for miniaturizing optical cavity, a key component to make lasers, into the nanoscale for the first time. It shows the cavity array which successfully captured light in 20nm dimension and show very high figure of merit experimentally. Last, I will discuss the future direction of the hyperbolic metamaterial and outlook for the practical applications. I believe our efforts in sub-wavelength metamaterials having such extraordinary optical properties will lead to further advanced nanophotonics and nanooptics research.

  • PDF

Crystal structure analysis of orthohombic $Sr_{0.6}Ca_{0.4}CuO_2$ compound (사방정계 $Sr_{0.6}Ca_{0.4}CuO_2$ 화합물의 결정구조해석)

  • Park, H.M.;Goetz, D.;Hahn, Th.
    • Korean Journal of Crystallography
    • /
    • v.7 no.1
    • /
    • pp.20-29
    • /
    • 1996
  • Sr0.6Ca0.4CuO2 single crystal has been synthesized by flux method and characterized by the single crystal X-ray diffraction. The compound has the orthorhombic system and the space group is Cmcm(63), lattice parameters are a=3.4645Å, b=16.1417Å, c=3.8727Å. In the (Sr1-xCax)CuO2 compound the limit of Ca from substitution for Sr was determined by the change of bond length. For this, X-ray diffraction, scanning electron microscopy (SEM), energy dispersive X-ray fluorescence (EDAX) and electron probe micro-analysis (EPMA) were used. From the change of Cu-O bond length as the Ca substitution, we concluded the limit of Ca incorporation Xca≒0.73.

  • PDF

Symmetry Exploitation of Diffraction Gratings to Enhance the Spectral Resolution

  • Lee, Eun-Seong;Lee, Jae-Yong
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.216-221
    • /
    • 2011
  • A diffraction grating is a highly symmetric optical element with a physical structure that is invariant under translational spatial movements. The translational symmetry is reflected in the fields that are diffracted from the grating. Here, we introduce a plane-parallel mirror pair onto the grating, which translates the fields through double reflections, and we describe a method of exploiting the symmetry to enhance the spectral resolution of a diffraction grating beyond the limit that is set by the number of grooves. The mirror pair creates another virtual grating beside the original one, effectively doubling the number of grooves. Addition of more mirror pairs can further increase the effective number of grooves despite the increased complexity and difficulty of experimental implementation. We experimentally demonstrate the spectral linewidth reduction by a factor of four in a neon fluorescence spectrum. Even though the geometrical restriction on the mirror deployment limits our method to a certain range of the whole spectrum, as a practical application example, a bulky spectrometer that is nearly empty inside can be made compact without sacrificing the resolution.

Calculation of Diffraction Patterns for Incidence of Planewave on Both Sides of a Dielectric Wedge by Using the Neumann Expansion (쇄기형 유전체의 앙면에 평면파 입사시 Neumann전개를 이용한 회절패턴 계산)

  • Kim, Se-Yun;Ra, Jung-Woong
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.5
    • /
    • pp.23-31
    • /
    • 1989
  • The electromagnetic diffraction problem for the incidence of E-polarized planewave on both interfaces of an arbitrary-angled dielectrc wedge is solved in conjunction with the edge condition near the tip of dielectric wedge in the static limit. The diffraction coefficients obtained by the tip of the wedge, the diffraction coefficients presented in this paper approach more closely to the exact pattem of a perfectly conducting wedge as the relative dielectric constants of the dielectric wedge increase.

  • PDF