• Title/Summary/Keyword: differentiated services (DiffServ)

Search Result 69, Processing Time 0.022 seconds

A traffic control system to manage bandwidth usage in IP networks supporting Differentiated Service (차별화서비스를 제공하는 IP네트워크에서 대역폭관리를 위한 트래픽 제어시스템)

  • 이명섭;박창현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.3B
    • /
    • pp.325-338
    • /
    • 2004
  • As the recent rapid development of internet technology and the wide spread of multimedia communication, massive increase of network traffic causes some problems such as the lack of network paths and the bad quality of service. To resolve these problems, this paper presents a traffic control agent that can perform the dynamic resource allocation by controlling traffic flows on a DiffServ network. In addition, this paper presents a router that can support DiffServ on Linux to support selective QoS in IP network environment. To implement a method for selective traffic transmission based on priority on a DiffServ router, this paper changes the queuing discipline in Linux, and presents the traffic control agent so that it can efficiently control routers, efficiently allocates network resources according to service requests, and relocate resources in response to state changes of the network. Particularly for the efficient processing of Assured Forwarding(AF) Per Hop Behavior(PHB), this paper proposes an ACWF$^2$Q$^{+}$ packet scheduler on a DiffServ router to enhance the throughput of packet transmission and the fairness of traffic services.s.

Design and Performance Evaluation of MPLS-DiffServ using MPLS Network Simulator (MPLS 네트워크 시뮬레이터를 이용한 MPLS-DiffServ 설계 및 성능평가)

  • 김지은;이귀상
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.25-28
    • /
    • 2000
  • As Internet users and network traffics are explosively increased, many researches have been done to provide fast and guaranteed Internet services. The results of these efforts are Multiprotocol Lab el Switching(MPLS) and differentiated service(Diff serv) emerging as a next generation backbone net work. In this paper, we make a research on gearing (or interworking) two technology needed to support end-to-end QoS and explain sequential procedure. And we simulate the L-LSP/E-LSP proposed by Working Group of IETF to be deployed to the DiffServ module which is implemented based on the MPLS network simulator and analyze the performance of the simulation result.

  • PDF

Packet Drop Technique for Differentiated Services in Wired Ship Area Networks (선박 내 유선망에서 차등화 서비스 지원을 위한 패킷 폐기 기술)

  • Lee, Seong Ro;Kwon, Jang-Woo;Jeong, Min-A;Hur, Kyeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.11
    • /
    • pp.1177-1184
    • /
    • 2014
  • An wired ship area network has functionality of remote control and autonomous management of various sensors and instruments embedded or boarded in a ship. For such environment, the DiffServ (Differentiated Services) realizes that the high-speed real-time flow with the higher priority has the guaranteed minimum data rate and is delivered faster. As a result of this DiffServ effect, the intelligent Ship Area Networks can be implemented. In this paper, an packet drop technique is proposed to outperform the previous RIO (RED In and Out) drop mechanism for DiffServ in ship area networks. the proposed packet drop technique does not manage the individual flows and divides them into several flow groups according to a criterion. And it guarantees the fairness between individual flows in the same QoS class through the group-based control. In simulation results of the proposed packet drop technique, the link utilization decreases than RIO. But it guarantees more data rates to DiffServ flows passing multiple bottleneck links.

RIO-DC Buffer Design for Core Routers in DiffServ Assured Services

  • Hur, Kyeong
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.539-544
    • /
    • 2011
  • In this paper, a parameter optimization method of RIO-DC (RED (Random Early Detection) with In and Out-De-Coupled Queues) scheme for Assured Service (AS) in Differentiated Services (DiffServ) is proposed. In order to optimize QoS (Quality of Service) performance of the RIO-DC policy for AS in terms of maximum tolerable latency, link utilization, fairness, etc., we should design router nodes with proper RIO-DC operating parameter values. Therefore, we propose a RIO-DC configuration method and the admission control criterion, considering the allocated bandwidth to each subclass and the corresponding buffer size, to increase throughput for In-profile traffic and link utilization. Simulation results show that RIO-DC with the proposed parameter values guarantees QoS performance comparable with the RIO scheme and it improves fairness between AS flows remarkably.

A Study on a Queue Management Scheme for Alleviating the Impact of Packet Size on the Throughput (패킷 크기에 따른 처리율 영향을 완화하는 큐 관리 기법 연구)

  • 이성근
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.4
    • /
    • pp.552-558
    • /
    • 2002
  • Differentiated services (DiffServ) architecture defines a new framework for the support of quality of service (QoS) in IP-based networks. RIO has received the most attention among all the active queue management mechanisms proposed for assured service in DiffServ environment. The paper proposed the enhanced RIO which could alleviate the impact of flow's packet sire on the realized throughput. The simulation results indicate that this mechanism, when combined with TSW as traffic conditioner, provide better throughput assurance and fair distribution of excess bandwidth independent of packet size of flows in case of well-provisioned network environment.

Real-time traffic service in network with DiffServ (DiffServ 기반 네트워크에서의 실시간 트래픽 서비스)

  • Joung, Jin-No
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1B
    • /
    • pp.53-60
    • /
    • 2007
  • We investigate the end-to-end delay bounds in large scale networks with Differentiated services (DiffServ) architecture. It is generally understood that networks with DiffServ architectures, where packets are treated according to the class they belong, can guarantee the end-to-end delay for packets of the highest priority class, only in lightly utilized cases. We focus on tree networks, which are defined to be acyclic connected graphs. We obtain a closed formula for delay bounds for such networks. We show that, in tree networks, the delay bounds exist regardless of the level of network utilization. These bounds are quadratically proportional to the maximum hop counts in heavily utilized networks; and are linearly proportional to the maximum hop counts in lightly utilized networks. Considering that tree networks, especially the Ethernet networks are being accepted more and more for access networks as well as provider networks, we argue that based on these delay bounds DiffServ architecture is able to support real time applications even for a large network. Throughout the paper we use Latency-Rate (LR) server model, with which it has proven that FIFO and Strict Priority are LR servers to each flows in certain conditions.

A Study on a Traffic Conditioning Scheme for Alleviating a bias against Reserved Bandwidth Size in Differentiated Services Network (차별 서비스 네트워크에서 예약 대역폭의 편향성을 완화하는 트래픽 조절 기법 연구)

  • 이성근
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.2
    • /
    • pp.228-235
    • /
    • 2002
  • Differentiated services network (DiffServ) aims to provide the same service to a group of connections that have similar Quality of Service requirements. One of the essential function to realize DiffServ is the traffic conditioning mechanisms to support the required services. The paper proposes the enhanced traffic conditioning mechanism which alleviates a bias against reserved bandwidth size. The simulation results show that the new mechanism is rather insensitive of size of reserved bandwidth, and performs better both in terms of throughput assurance and fair distribution of excess bandwidth in case of well-provisioned and over-provisioned network environment.

Performance Analysis of Random Early Dropping Effect at an Edge Router for TCP Fairness of DiffServ Assured Service

  • Hur Kyeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4B
    • /
    • pp.255-269
    • /
    • 2006
  • The differentiated services(DiffServ) architecture provides packet level service differentiation through the simple and predefined Per-Hop Behaviors(PHBs). The Assured Forwarding(AF) PHB proposed as the assured services uses the RED-in/out(RIO) approach to ensusre the expected capacity specified by the service profile. However, the AF PHB fails to give good QoS and fairness to the TCP flows. This is because OUT(out- of-profile) packet droppings at the RIO buffer are unfair and sporadic during only network congestion while the TCP's congestion control algorithm works with a different round trip time(RTT). In this paper, we propose an Adaptive Regulating Drop(ARD) marker, as a novel dropping strategy at the ingressive edge router, to improve TCP fairness in assured services without a decrease in the link utilization. To drop packets pertinently, the ARD marker adaptively changes a Temporary Permitted Rate(TPR) for aggregate TCP flows. To reduce the excessive use of greedy TCP flows by notifying droppings of their IN packets constantly to them without a decrease in the link utilization, according to the TPR, the ARD marker performs random early fair remarking and dropping of their excessive IN packets at the aggregate flow level. Thus, the throughput of a TCP flow no more depends on only the sporadic and unfair OUT packet droppings at the RIO buffer in the core router. Then, the ARD marker regulates the packet transmission rate of each TCP flow to the contract rate by increasing TCP fairness, without a decrease in the link utilization.

Performance Evaluation of a Differentiated Service Mechanism by Traffic Models and Weight Factor (트래픽 모델과 Weight Factor에 의한 차등 서비스 메커니즘의 성능평가)

  • 전용희;박수영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11C
    • /
    • pp.10-23
    • /
    • 2001
  • It is difficult to satisfy the QoS(Quality of Service) guarantee which is required by real-time application services only with the Best-Effort(BE) service adopted in the current Internet. Therefore, worldwide research is being made on the method of QoS provisioning. Among them, the QoS guarantee mechanism using the Diffserv(Differentiated Service) was discussed in this paper. First we analyzed how the DiffServ performance was affected by traffic models. For this, we performed the research for the random, bursts, and self-similar traffic modeling method. We then designed and implemented an OPNET simulator, and performed the simulation 7d performance evaluation for diverse input parameters. Based on the results of performance evaluation, it was confirmed that QoS guarantee is possible for the EF(Expedited Forwarding) class with the DiffServ function under every environments considered and the service separation between EF and BE(Best Effort) classes is also possible. We also analyzed the performance variation and dynamic behavior of DiffServ mechanism based on the resource allocation between E? and BE classes in WFQ(Weighted Fair Queueing).

  • PDF

A Study on the Performance Analysis and synthesis for a Differentiated Service Networks (차등 서비스 네트워크에 대한 성능 분석과 합성에 대한 연구)

  • Jeon, Yong-Hui;Park, Su-Yeong
    • The KIPS Transactions:PartC
    • /
    • v.9C no.1
    • /
    • pp.123-134
    • /
    • 2002
  • The requirement for QoS (Quality of Service) has become an important Issue as real-time or high bandwidth services are increasing, such as Internet Telephony, Internet broadcasting, and multimedia service etc. In order to guarantee the QoS of Internet application services, several approaches are being sought including IntServ (Integrated Service) DiffServ(Differentiated Srvices), and MPLS(Multi-Protocol Label Switching). In this paper, we describe the performance analysis of QoS guarantee mechanism using the DiffServ. To analyze how the DiffServ performance was affected by diverse input traffic models and the weight value in WFQ(Weighted Fair Queueing), we simulated and performed performance evaluation under a random, bursty, and self-similar input traffic models and for diverse input parameters. leased on the results of performance analysis, it was confirmed that significant difference exist in packet delay and loss depending on the input traffic models used. However, it was revealed that QoS guarantee is possible to the EF (expedited Forwarding) class and the service separation between RF and BE (Best Effort) classes may also be achieved. Next, we discussed the performance synthesis problem. (i. e. derived the conservation laws for a DiffServ networks, and analysed the performance variation and dynamic behavior based on the resource allocation (i.e., weight value) in WFQ.