• Title/Summary/Keyword: differential virulence

Search Result 23, Processing Time 0.014 seconds

Proteomic Analysis of Toxoplasma gondii KI-1 Tachyzoites

  • Choi, Si-Hwan;Kim, Tae-Yun;Park, Sung-Goo;Cha, Guang-Ho;Shin, Dae-Whan;Chai, Jong-Yil;Lee, Young-Ha
    • Parasites, Hosts and Diseases
    • /
    • v.48 no.3
    • /
    • pp.195-201
    • /
    • 2010
  • We studied on the proteomic characteristics of Toxoplasma gondii KI-1 tachyzoites which were originally isolated from a Korean patient, and compared with those of the well-known virulent RH strain using 2-dimensional electrophoresis (2-DE), mass spectrometry, and quantitative real-time PCR. Two-dimensional separation of the total proteins isolated from KI-1 tachyzoites revealed up to 150 spots, of which 121 were consistent with those of RH tachyzoites. Of the remaining 29 spots, 14 showed greater than 5-fold difference in density between the KI-1 and RH tachyzoites at a pH of 5.0-8.0. Among the 14 spots, 5 from the KI-1 isolate and 7 from the RH strain were identified using MALDI-TOF mass spectrometry and database searches. The spots from the KI-1 tachyzoties were dense granule proteins (GRA 2,3,6, and 7), hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGRPTase), and uracil phosphoribosyltransferase (UPRTase). The spots from the RH strain were surface antigen 1 (SAG 1), L-lactate dehydrogenase (LDH), actin, chorismate synthase, peroximal catalase, hexokinase, bifunctional dihydrofolate reductase-thymidylate synthase (DHTR-TS), and nucleosidetriphosphatases (NTPases). Quantitative real-time PCR supported our mass spectrometric results by showing the elevated expression of the genes encoding GRA 2,3, and 6 and UPRTase in the KI-1 tachyzoites and those encoding GRA 7, SAG 1, NTPase, and chorismate synthase in the RH tachyzoites. These observations demonstrate that the protein compositions of KI-1 and RH tachyzoites are similar but differential protein expression is involved in virulence.

Evaluation of Durum Wheat Genotypes for Resistance against Root Rot Disease Caused by Moroccan Fusarium culmorum Isolates

  • Bouarda, Jamila;Bassi, Filippo M.;Wallwork, Hugh;Benchacho, Mohammed;Labhilili, Mustapha;Maafa, Ilyass;El Aissami, Aicha;Bentata, Fatiha
    • The Plant Pathology Journal
    • /
    • v.38 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • Fusarium culmorum is one of the most important causal agents of root rot of wheat. In this study, 10 F. culmorum isolates were collected from farms located in five agro-ecological regions of Morocco. These were used to challenge 20 durum wheat genotypes via artificial inoculation of plant roots under controlled conditions. The isolate virulence was determined by three traits (roots browning index, stem browning index, and severity of root rot). An alpha-lattice design with three replicates was used, and the resulting ANOVA revealed a significant (P < 0.01) effect of isolate (I), genotype (G), and G × I interaction. A total of four response types were observed (R, MR, MS, and S) revealing that different genes in both the pathogen and the host were activated in 53% of interactions. Most genotypes were susceptible to eight or more isolates, while the Moroccan cultivar Marouan was reported resistant to three isolates and moderately resistant to three others. Similarly, the Australian breeding line SSD1479-117 was reported resistant to two isolates and moderately resistant to four others. The ICARDA elites Icaverve, Berghisyr, Berghisyr2, Amina, and Icaverve2 were identified as moderately resistant. Principal component analysis based on the genotypes responses defined two major clusters and two sub-clusters for the 10 F. culmorum isolates. Isolate Fc9 collected in Khemis Zemamra was the most virulent while isolate Fc3 collected in Haj-Kaddour was the least virulent. This work provides initial results for the discovery of differential reactions between the durum lines and isolates and the identification of novel sources of resistance.

Magnaporthe oryzae Effector AVR-Pii Helps to Establish Compatibility by Inhibition of the Rice NADP-Malic Enzyme Resulting in Disruption of Oxidative Burst and Host Innate Immunity

  • Singh, Raksha;Dangol, Sarmina;Chen, Yafei;Choi, Jihyun;Cho, Yoon-Seong;Lee, Jea-Eun;Choi, Mi-Ok;Jwa, Nam-Soo
    • Molecules and Cells
    • /
    • v.39 no.5
    • /
    • pp.426-438
    • /
    • 2016
  • Plant disease resistance occurs as a hypersensitive response (HR) at the site of attempted pathogen invasion. This specific event is initiated in response to recognition of pathogen-associated molecular pattern (PAMP) and subsequent PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). Both PTI and ETI mechanisms are tightly connected with reactive oxygen species (ROS) production and disease resistance that involves distinct biphasic ROS production as one of its pivotal plant immune responses. This unique oxidative burst is strongly dependent on the resistant cultivars because a monophasic ROS burst is a hallmark of the susceptible cultivars. However, the cause of the differential ROS burst remains unknown. In the study here, we revealed the plausible underlying mechanism of the differential ROS burst through functional understanding of the Magnaporthe oryzae (M. oryzae) AVR effector, AVR-Pii. We performed yeast two-hybrid (Y2H) screening using AVR-Pii as bait and isolated rice NADP-malic enzyme2 (Os-NADP-ME2) as the rice target protein. To our surprise, deletion of the rice Os-NADP-ME2 gene in a resistant rice cultivar disrupted innate immunity against the rice blast fungus. Malic enzyme activity and inhibition studies demonstrated that AVR-Pii proteins specifically inhibit in vitro NADP-ME activity. Overall, we demonstrate that rice blast fungus, M. oryzae attenuates the host ROS burst via AVR-Pii-mediated inhibition of Os-NADP-ME2, which is indispensable in ROS metabolism for the innate immunity of rice. This characterization of the regulation of the host oxidative burst will help to elucidate how the products of AVR genes function associated with virulence of the pathogen.