• Title/Summary/Keyword: differential response

Search Result 931, Processing Time 0.041 seconds

Nonlinear stability of bio-inspired composite beams with higher order shear theory

  • Nazira Mohamed;Salwa A. Mohamed;Alaa A. Abdelrhmaan;Mohamed A. Eltaher
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.759-772
    • /
    • 2023
  • This manuscript presents a comprehensive mathematical model to investigate buckling stability and postbuckling response of bio-inspired composite beams with helicoidal orientations. The higher order shear deformation theory as well as the Timoshenko beam theories are exploited to include the shear influence. The equilibrium nonlinear integro-differential equations of helicoidal composite beams are derived in detail using the energy conservation principle. Differential integral quadrature method (DIQM) is employed to discretize the nonlinear system of differential equations and solve them via the Newton iterative method then obtain the response of helicoidal composite beam. Numerical calculations are carried out to check the validity of the present solution methodology and to quantify the effects of helicoidal rotation angle, elastic foundation constants, beam theories, geometric and material properties on buckling, postbuckling of bio-inspired helicoidal composite beams. The developed model can be employed in design and analysis of curved helicoidal composite beam used in aerospace and naval structures.

Transient response of 2D functionally graded beam structure

  • Eltaher, Mohamed A.;Akbas, Seref D.
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.357-367
    • /
    • 2020
  • The objective of this article is investigation of dynamic response of thick multilayer functionally graded (FG) beam under generalized dynamic forces. The plane stress problem is exploited to describe the constitutive equation of thick FG beam to get realistic and accurate response. Applied dynamic forces are assumed to be sinusoidal harmonic, sinusoidal pulse or triangle in time domain and point load. Equations of motion of deep FG beam are derived based on the Hamilton principle from kinematic relations and constitutive equations of plane stress problem. The numerical finite element procedure is adopted to discretize the space domain of structure and transform partial differential equations of motion to ordinary differential equations in time domain. Numerical time integration method is used to solve the system of equations in time domain and find the time responses. Numerical parametric studies are performed to illustrate effects of force type, graduation parameter, geometrical and stacking sequence of layers on the time response of deep multilayer FG beams.

Case Study on Local Differential Privacy in Practice : Privacy Preserving Survey (로컬 차분 프라이버시 실제 적용 사례연구 : 프라이버시 보존형 설문조사)

  • Jeong, Sooyong;Hong, Dowon;Seo, Changho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.1
    • /
    • pp.141-156
    • /
    • 2020
  • Differential privacy, which used to collect and analysis data and preserve data privacy, has been applied widely in data privacy preserving data application. Local differential privacy algorithm which is the local model of differential privacy is used to user who add noise to his data himself with randomized response by self and release his own data. So, user can be preserved his data privacy and data analyst can make a statistical useful data by collected many data. Local differential privacy method has been used by global companies which are Google, Apple and Microsoft to collect and analyze data from users. In this paper, we compare and analyze the local differential privacy methods which used in practically. And then, we study applicability that applying the local differential privacy method in survey or opinion poll scenario in practically.

HDQ-FD integrated methodology for nonlinear static and dynamic response of doubly curved shallow shells

  • Civalek, Omer;Ulker, Mehmet
    • Structural Engineering and Mechanics
    • /
    • v.19 no.5
    • /
    • pp.535-550
    • /
    • 2005
  • The non-linear static and dynamic response of doubly curved thin isotropic shells has been studied for the step and sinusoidal loadings. Dynamic analogues Von Karman-Donnel type shell equations are used. Clamped immovable and simply supported immovable boundary conditions are considered. The governing nonlinear partial differential equations of the shell are discretized in space and time domains using the harmonic differential quadrature (HDQ) and finite differences (FD) methods, respectively. The accuracy of the proposed HDQ-FD coupled methodology is demonstrated by the numerical examples. Numerical examples demonstrate the satisfactory accuracy, efficiency and versatility of the presented approach.

Thermal nonlinear dynamic and stability of carbon nanotube-reinforced composite beams

  • M. Alimoradzadeh;S.D. Akbas
    • Steel and Composite Structures
    • /
    • v.46 no.5
    • /
    • pp.637-647
    • /
    • 2023
  • Nonlinear free vibration and stability responses of a carbon nanotube reinforced composite beam under temperature rising are investigated in this paper. The material of the beam is considered as a polymeric matrix by reinforced the single-walled carbon nanotubes according to different distributions with temperature-dependent physical properties. With using the Hamilton's principle, the governing nonlinear partial differential equation is derived based on the Euler-Bernoulli beam theory. In the nonlinear kinematic assumption, the Von Kármán nonlinearity is used. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The critical buckling temperatures, the nonlinear natural frequencies and the nonlinear free response of the system is obtained. The effect of different patterns of reinforcement on the critical buckling temperature, nonlinear natural frequency, nonlinear free response and phase plane trajectory of the carbon nanotube reinforced composite beam investigated with temperature-dependent physical property.

Nonlinear dynamic response of MDOF systems by the method of harmonic differential quadrature (HDQ)

  • Civalek, Omer
    • Structural Engineering and Mechanics
    • /
    • v.25 no.2
    • /
    • pp.201-217
    • /
    • 2007
  • A harmonic type differential quadrature approach for nonlinear dynamic analysis of multi-degree-of-freedom systems has been developed. A series of numerical examples is conducted to assess the performance of the HDQ method in linear and nonlinear dynamic analysis problems. Results are compared with the existing solutions available from other analytical and numerical methods. In all cases, the results obtained are quite accurate.

Jury Evaluation Test for Annoyance Response of KTX (Korea Train Express) and Ordinary Train Noise (고속철도와 일반철도소음의 성가심 반응에 대한 청감실험 비교 연구)

  • Jeon, Hyeong-Jun;Kim, Deuk-Seong;Go, Jun-Hui;Lee, Geon;Jang, Seo-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1134-1139
    • /
    • 2007
  • In recent years, public complaints about railroad noise by KTX and Ordinary train are increasing. Restriction of railways uses same standard without distinguishing the type of railways. According to the type of railways, the frequency characteristics of emitting noise is different. Therefore it is requested to know how vary the public response to each types of railway. The noise annoyance to three types of trains (KTX, Electric train, Diesel train) was analyzed by Jury Evaluation Test for assessing the effect of frequency characteristics. The numerical results by a Semantic Differential Method showed that annoyance response to three type of trains depended on the frequency characteristics. As a result, this study proposed that the KTX could have a bonus level of maximum 2.9dB(A) to ordinary train.

  • PDF

Comparison Between Two Analytical Solutions for Random Vibration Responses of a Spring-Pendulum System with Internal Resonance (내부공진을 가진 탄성진자계의 불규칙진동응답을 위한 두 해석해의 비교)

  • 조덕상;이원경
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.399-406
    • /
    • 1998
  • An investigation into the stochastic bifurcation and response statistits of an autoparameteric system under broad-band random excitation is made. The specific system examined is a spring-pendulum system with internal resonance, which is known to be a good model for a variety of engineering systems, including ship motions with nonlinear coupling between pitching and rolling motions. The Fokker-Planck equations is used to generate a general first-order differential equation in the dynamic moment of response coordinates. By means of the Gaussian and non-Gaussian closure methods the dynamic moment equations for the random responses of the system are reduced to a system of autonomous ordinary differential equations. In view of equilibrium solutions of this system and their stability we examine the stochastic bifurcation and response statistics. The analytical results are compared with results obtained by Monte Carlo simulation.

  • PDF

Nonlinear Response Phenomena of a Randomly Excited Vibration Absorber System (불규칙적으로 가진되는 동흡진기계의 비선형응답현상)

  • Cho, Duk-Sang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.2
    • /
    • pp.141-147
    • /
    • 2000
  • The nonlinear response statistics of an autoparameteric system under broad-band random excitation is investigated. The specific system examined is a vibration absorber system with internal resonance, which is known to be a good model for a variety of engineering systems, including ship motions with nonlinear coupling between pitching and rolling motions. The Fokker-Planck equations is used to generate a general first-order differential equation in the dynamic moment of response coordinates. By means of the Gaussian closure method the dynamic moment equations for the random responses of the system are reduced to a system of autonomous ordinary differential equations. The jump phenomenon was found by Gaussian closure method under random excitation.

  • PDF