• Title/Summary/Keyword: differential regulation

Search Result 246, Processing Time 0.026 seconds

Differential Regulation of the Caprine ${\beta}$-Lactoglobulin Gene Promoter in the Cultured Mammary HC11 Cells

  • Kim, Jae-Man
    • Animal cells and systems
    • /
    • v.1 no.2
    • /
    • pp.345-350
    • /
    • 1997
  • The ${\beta}$-Lactoglobulin (BLG) gene expression is differentially regulated during development of the mammary tissues. Such differential regulation of the BLG gene expression can be reiterated in the cultured mammary HC11 cells. In the growing non-confluent HC11 cells, the BLG promoter activity was shown to be partially repressed by the upstream regulatory sequence. The repression was gradually diminished and switched to activation as the cells grew confluent. The differential regulation of the BLG promoter was controlled by the 5'-regulatory sequence located at the upstream of 205 bp. Electromobility shift assay showed that nuclear extract from HC11 cells differentially bound on the regulatory sequence, depending on the cell confluency, which was in accordance with the differential transcriptional activity. DNase I foot-print assay, however, revealed that all nuclear extracts presented the same foot-prints, regardless of confluency of HC11 cells. These results suggest that differential regulation BLG gene expression by the 5'-regulatory sequence may be accomplished by competitive and/or cooperative binding of differential regulatory factors on the same regulatory element.

  • PDF

Enhancement of GluN2B Subunit-Containing NMDA Receptor Underlies Serotonergic Regulation of Long-Term Potentiation after Critical Period in the Rat Visual Cortex

  • Joo, Kayoung;Rhie, Duck-Joo;Jang, Hyun-Jong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.6
    • /
    • pp.523-531
    • /
    • 2015
  • Serotonin [5-hydroxytryptamine (5-HT)] regulates synaptic plasticity in the visual cortex. Although the effects of 5-HT on plasticity showed huge diversity depending on the ages of animals and species, it has been unclear how 5-HT can show such diverse effects. In the rat visual cortex, 5-HT suppressed long-term potentiation (LTP) at 5 weeks but enhanced LTP at 8 weeks. We speculated that this difference may originate from differential regulation of neurotransmission by 5-HT between the age groups. Thus, we investigated the effects of 5-HT on apha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-, ${\gamma}$-aminobutyric acid receptor type A (GABAAR)-, and N-methyl-D-aspartic acid receptor (NMDAR)-mediated neurotransmissions and their involvement in the differential regulation of plasticity between 5 and 8 weeks. AMPAR-mediated currents were not affected by 5-HT at both 5 and 8 weeks. GABAAR-mediated currents were enhanced by 5-HT at both age groups. However, 5-HT enhanced NMDAR-mediated currents only at 8 weeks. The enhancement of NMDAR-mediated currents appeared to be mediated by the enhanced function of GluN2B subunit-containing NMDAR. The enhanced GABAAR- and NMDAR-mediated neurotransmissions were responsible for the suppression of LTP at 5 weeks and the facilitation of LTP at 8 weeks, respectively. These results indicate that the effects of 5-HT on neurotransmission change with development, and the changes may underlie the differential regulation of synaptic plasticity between different age groups. Thus, the developmental changes in 5-HT function should be carefully considered while investigating the 5-HT-mediated metaplastic control of the cortical network.

Short-chain fatty acids, including acetate, propionate, and butyrate, elicit differential regulation of intracellular Ca2+ mobilization, expression of IL-6 and IL-8, and cell viability in gingival fibroblast cells

  • Kim, So Hui;Kim, Min Seuk
    • International Journal of Oral Biology
    • /
    • v.45 no.2
    • /
    • pp.64-69
    • /
    • 2020
  • Short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate are secondary metabolites produced by anaerobic fermentation of dietary fibers in the intestine. Intestinal SCFAs exert various beneficial effects on intestinal homeostasis, including energy metabolism, autophagy, cell proliferation, immune reaction, and inflammation, whereas contradictory roles of SCFAs in the oral cavity have been reported. Herein, we found that low and high concentrations of SCFAs induce differential regulation of intracellular Ca2+ mobilization and expression of pro-inflammatory cytokines, such as interleukin (IL)-6 and IL-8, respectively, in gingival fibroblast cells. Additionally, cell viability was found to be differentially regulated in response to low and high concentrations of SCFAs. These findings demonstrate that the physiological functions of SCFAs in various cellular responses are more likely dependent on their local concentration.

Differential regulation of phospholipase $C\gamma$ isoforms through Fc$\varepsilon$RI, high affinity IgE receptor

  • Yoon, Eung-Joo;Beom, Sun-Ryeo;Kim, Kyeong-Man
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.93.3-94
    • /
    • 2003
  • The signaling components of high affinity IgE receptor (Fc RI) were searched by yeast-hybrid screening of the cDNA library constructed from RBL-2H3 cells. The cytoplasmic part of the Fc RI- chain was found to specifically interact with PLC 2, and further comparatives studies were conducted focusing on the differential regulation of two PLC- isoforms through Fc RI. The inhibitors of Src, Syk, and protein kinase C similarly affected the tyrosine phosporylations of PLC 1 and PLC 2 but the inhibitors of PI3-kinase and p42/44 ERK effectively inhibited the activation of PLC 1 but not PLC 2. (omitted)

  • PDF

Neural Tissue-Specific Epidermal Growth Factor (EGF)-like Domain Containing Protein, NELL2, Plays on Important Role in the Control Regulation of Puberty Onset in the Female Rat Hypothalamus

  • Ha, Chang-Man;Kang, Hae-Mook;Lee, Byung-Ju
    • Animal cells and systems
    • /
    • v.4 no.4
    • /
    • pp.367-373
    • /
    • 2000
  • In the present study we determined if NELL2, a neural tissue-specific protein containing 6 epidermal growth factor (EGF)-like repeat domains, plays an important role in the regulation of puberty initiation in the rat hypothalamus. We origin811y found that NELL2 is a new estrogen-responsive gene in hypothalami derived from estrogen-sterilized and control rats using a PCR differential display. In the 40-day-old female rat hypothalamus, NELL2 was up-regulated by neonatal estrogen treatment. In situ hybridization histochemistry showed that NELL2 is very abundant in the ventromedial hypothalamic nucleus that is responsible for the control of sex behavior. NELL2 mRNA level in the medial basal hypothalamus showed a dramatic increase before female puberty onset, which suggests that NELL2 may be involved in the process regulating female puberty onset. We attemped to block NELL2 synthesis with intracerebroventricular injection of an antisense oligodeoxynucleotide (ODN) to the NELL2 mRNA, and examined its effect on the puberty onset of the female rat. The antisense ODN significantly delayed puberty initiation determined by vaginal opening. In summary, NELL2 may play an important role in the regulation of female puberty onset.

  • PDF

Identifying statistically significant gene sets based on differential expression and differential coexpression (특이발현과 특이공발현을 고려한 유의한 유전자 집단 탐색)

  • Lee, Sunho
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.3
    • /
    • pp.437-448
    • /
    • 2016
  • Gene set analysis utilizing biologic information is expected to produce more interpretable results because the occurrence of tumors (or diseases) is believed to be associated with the regulation of related genes. Many methods have been developed to identify statistically significant gene sets across different phenotypes; however, most focus exclusively on either the differential gene expression or the differential correlation structure in the gene set. This research provides a new method that simultaneously considers the differential expression of genes and differential coexpression with multiple genes in the gene set. Application of this NEW method is illustrated with real microarray data example, p53; subsequently, a simulation study compares its type I error rate and power with GSEA, SAMGS, GSCA and GSNCA.

Cloning and Characterization of Liver cDNAs That Are Differentially Expressed between Chicken Hybrids and Their Parents

  • Sun, Dong-Xiao;Wang, Dong;Yu, Ying;Zhang, Yuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.12
    • /
    • pp.1684-1690
    • /
    • 2005
  • Using mRNA differential display technique, we investigated differential gene expression in hybrids relative to their parents in a diallel cross involving four chicken breeds in order to provide an insight into the molecular basis of heterosis in chicken. The results indicated that there was extensive differential gene expression between chicken F1 hybrids and their parents which was classified into four kinds of patterns as following: (1) bands only detected in hybrid F1; (2) bands only absent in hybrid F1; (3) bands only detected in parent P1 or P2; (4) bands absent in parent P1 or P2. Forty-two differentially expressed cDNAs were cloned and sequenced, and their expression patterns were confirmed by Reverse-Northern dot blot. Sequence analysis and database searches revealed that genes showed differential expression between hybrid and parents were regulatory and functional genes involved in metabolism, mRNA splicing, transcriptional regulation, cell cycles and protein modification. These results indicated that hybridization between two parents can cause changes in expression of a variety of genes. In conclusion, that the altered pattern of gene expression in hybrids may be responsible for heterosis in chickens.