• 제목/요약/키워드: differential quadrature method

검색결과 274건 처리시간 0.02초

Static analysis of monoclinic plates via a three-dimensional model using differential quadrature method

  • Bahrami, Kourosh;Afsari, Ahmad;Janghorban, Maziar;Karami, Behrouz
    • Structural Engineering and Mechanics
    • /
    • 제72권1호
    • /
    • pp.131-139
    • /
    • 2019
  • According to the properties of monoclinic materials, the normal and shear stresses are depending on both normal and shear strains. In the current investigation, the static analysis of monoclinic plates based on three dimensional elasticity theory is investigated. New governing equations and boundary conditions are derived for monoclinic plates and the Differential Quadrature Method (DQM) is used to solve the static problem. In our method of solution, no approximation is used and the DQM is adopted in all directions. By showing the differences between our results and the results for especially orthotropic plates, one can find that it is worth to investigate the monoclinic plates to have more accurate results.

미분구적법(DQM)을 이용한 탄성지반 위에 놓인 변단면 압축부재의 자유진동 해석 (Free Vibration Analysis of Compressive Tapered Members Resting on Elastic Foundation Using Differential Quadrature Method)

  • 이병구;최규문;이태은;김무영
    • 한국전산구조공학회논문집
    • /
    • 제15권4호
    • /
    • pp.629-638
    • /
    • 2002
  • 이 논문은 미분구적법(DQM)을 이용한 탄성지반 위에 놓인 변단면 압축부재의 자유진동에 관한 연구이다. 문헌고찰을 통하여 채택한 지배미분방정식과 경계조건을 DQM에 적용하여 고유진동수를 산출할 수 있는 수치해석법을 개발하였다. DQM에서 수치적분을 위한 격자점의 선택은 Chebyshev-Gauss-Lobatto 법을 택하고, 고유치의 산정은 QR 알고리듬을 이용하였다. 타문헌과의 결과비교를 통하여 본 연구의 걸과가 타당함을 보였고, DQM에 대한 적용성 검토에서 고유진동수의 산출이 매우 안정적임을 보였다.

미분구적법을 이용한 곡선보의 태평면 진동분석 (In-Plane Extensional Vibration Analysis of Curved Beams using DQM)

  • 강기준;김병삼
    • 한국안전학회지
    • /
    • 제17권1호
    • /
    • pp.99-104
    • /
    • 2002
  • 아크축(arch axis)의 연장(extensibility) 및 회전관성(rotatory inertia)을 고려한 곡선보(curved beam)의 평면내(in-plane) 자유진동을 미분구적법(DQM)을 이용하여 다양한 경계조건(boundary conditions)과 굽힘각(opening angles)에 따른 진동수(frequencies)를 계산하였다. DQM의 결과를 다른 수치해석결과와 비교하였으며, DQM은 적은 요소(grid points)을 사용하여 정확한 해석결과를 보여주었다.

Thermal buckling analysis of shear deformable laminated orthotropic plates by differential quadrature

  • Moradi, S.;Mansouri, Mohammad Hassan
    • Steel and Composite Structures
    • /
    • 제12권2호
    • /
    • pp.129-147
    • /
    • 2012
  • In this paper, the thermal buckling analysis of rectangular composite laminated plates is investigated using the Differential Quadrature (DQ) method. The composite plate is subjected to a uniform temperature distribution and arbitrary boundary conditions. The analysis takes place in two stages. First, pre-buckling forces due to a temperature rise are determined by using a membrane solution. In the second stage, the critical temperature is predicted based on the first-order shear deformation theory. To verify the accuracy of the method, several case studies were used and the numerical results were compared with those of other published literatures. Moreover, the effects of several parameters such as aspect ratio, fiber orientation, modulus ratio, and various boundary conditions on the critical temperature were examined. The results confirm the efficiency and accuracy of the DQ method in dealing with this class of engineering problems.

Solution method for the classical beam theory using differential quadrature

  • Rajasekaran, S.;Gimena, L.;Gonzaga, P.;Gimena, F.N.
    • Structural Engineering and Mechanics
    • /
    • 제33권6호
    • /
    • pp.675-696
    • /
    • 2009
  • In this paper, a unified solution method is presented for the classical beam theory. In Strength of Materials approach, the geometry, material properties and load system are known and related with the unknowns of forces, moments, slopes and deformations by applying a classical differential analysis in addition to equilibrium, constitutive, and kinematic laws. All these relations are expressed in a unified formulation for the classical beam theory. In the special case of simple beams, a system of four linear ordinary differential equations of first order represents the general mechanical behaviour of a straight beam. These equations are solved using the numerical differential quadrature method (DQM). The application of DQM has the advantages of mathematical consistency and conceptual simplicity. The numerical procedure is simple and gives clear understanding. This systematic way of obtaining influence line, bending moment, shear force diagrams and deformed shape for the beams with geometric and load discontinuities has been discussed in this paper. Buckling loads and natural frequencies of any beam prismatic or non-prismatic with any type of support conditions can be evaluated with ease.

A full path assessment approach for vibration serviceability and vibration control of footbridges

  • Zhu, Qiankun;Hui, Xiaoli;Du, Yongfeng;Zhang, Qiong
    • Structural Engineering and Mechanics
    • /
    • 제70권6호
    • /
    • pp.765-779
    • /
    • 2019
  • Most of the existing evaluation criteria of vibration serviceability rely on the peak acceleration of the structure rather than that of the people keeping their own body unmoved on the structure who is the real receiver of structural vibrations. In order to accurately assess the vibration serviceability, therefore, a full path assessment approach of vibration serviceability based on vibration source, path and receiver is not only tentatively proposed in this paper, taking the peak acceleration of receiver into account, but also introduce a probability procedure to provide more instructive information instead of a single value. In fact, semi-rigid supported on both sides of the structure is more consistent with the actual situation than simply supported or clamped due to the application of the prefabricated footbridge structures. So, the footbridge is regarded as a beam with semi-rigid supported on both sides in this paper. The differential quadrature-integral quadrature coupled method is not only to handle different type of boundary conditions, but also after being further modified via the introduction of an approximation procedure in this work, the time-varying system problem caused by human-structure interaction can be solved well. The analytical results of numerical simulations demonstrate that the modified differential quadrature-integral quadrature coupled method has higher reliability and accuracy compared with the mode superposition method. What's more, both of the two different passive control measures, the tuned mass damper and semi-rigid supported, have good performance for reducing vibrations. Most importantly, semi-rigid supported is easier to achieve the objective of reducing vibration compared with tuned mass damper in design stage of structure.

Free vibration of tapered arches made of axially functionally graded materials

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • 제45권4호
    • /
    • pp.569-594
    • /
    • 2013
  • The free vibration of axially functionally graded tapered arches including shear deformation and rotatory inertia are studied through solving the governing differential equation of motion. Numerical results are presented for circular, parabolic, catenary, elliptic and sinusoidal arches with hinged-hinged, hinged-clamped and clamped-clamped end restraints. In this study Differential Quadrature element of lowest order (DQEL) or Lagrangian Interpolation technique is applied to solve the problems. Three general taper types for rectangular section are considered. The lowest four natural frequencies are calculated and compared with the published results.

Mechanical analysis of non-uniform beams resting on nonlinear elastic foundation by the differential quadrature method

  • Hsu, Ming-Hung
    • Structural Engineering and Mechanics
    • /
    • 제22권3호
    • /
    • pp.279-292
    • /
    • 2006
  • A new approach using the differential quadrature method (DQM) is derived for analysis of non-uniform beams resting on nonlinear media in this study. The influence of velocity dependent viscous damping and strain rate dependent viscous damping is investigated. The results solved using the DQM have excellent agreement with the results solved using the FEM. Numerical results indicated that the DQM is valid and efficient for non-uniform beams resting on non-linear media.

Nonlinear stability of bio-inspired composite beams with higher order shear theory

  • Nazira Mohamed;Salwa A. Mohamed;Alaa A. Abdelrhmaan;Mohamed A. Eltaher
    • Steel and Composite Structures
    • /
    • 제46권6호
    • /
    • pp.759-772
    • /
    • 2023
  • This manuscript presents a comprehensive mathematical model to investigate buckling stability and postbuckling response of bio-inspired composite beams with helicoidal orientations. The higher order shear deformation theory as well as the Timoshenko beam theories are exploited to include the shear influence. The equilibrium nonlinear integro-differential equations of helicoidal composite beams are derived in detail using the energy conservation principle. Differential integral quadrature method (DIQM) is employed to discretize the nonlinear system of differential equations and solve them via the Newton iterative method then obtain the response of helicoidal composite beam. Numerical calculations are carried out to check the validity of the present solution methodology and to quantify the effects of helicoidal rotation angle, elastic foundation constants, beam theories, geometric and material properties on buckling, postbuckling of bio-inspired helicoidal composite beams. The developed model can be employed in design and analysis of curved helicoidal composite beam used in aerospace and naval structures.

Development of a meshless finite mixture (MFM) method

  • Cheng, J.Q.;Lee, H.P.;Li, Hua
    • Structural Engineering and Mechanics
    • /
    • 제17권5호
    • /
    • pp.671-690
    • /
    • 2004
  • A meshless method with novel variation of point collocation by finite mixture approximation is developed in this paper, termed the meshless finite mixture (MFM) method. It is based on the finite mixture theorem and consists of two or more existing meshless techniques for exploitation of their respective merits for the numerical solution of partial differential boundary value (PDBV) problems. In this representation, the classical reproducing kernel particle and differential quadrature techniques are mixed in a point collocation framework. The least-square method is used to optimize the value of the weight coefficient to construct the final finite mixture approximation with higher accuracy and numerical stability. In order to validate the developed MFM method, several one- and two-dimensional PDBV problems are studied with different mixed boundary conditions. From the numerical results, it is observed that the optimized MFM weight coefficient can improve significantly the numerical stability and accuracy of the newly developed MFM method for the various PDBV problems.