• Title/Summary/Keyword: differential pulse voltammetry

Search Result 121, Processing Time 0.025 seconds

Determination of Ag(Ⅰ) Ion with a Chemically Modified Carbon Paste Electrode Containing Cinchonidine (Cinchonidine으로 변성된 Carbon Paste 전극을 사용한 은이온의 정량)

  • Kim, Sin Hui;Won, Mi Suk;Sim, Yun Bo
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.10
    • /
    • pp.734-740
    • /
    • 1994
  • Electrochemical determination of Ag(I) ion was carried out by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) with the carbon paste electrode (CPE) containing cinchonidine. The detection limit for Ag(I) ion was shown to be $1.0 {\times}10^{-6}$ M in conventional CV and up to $8.0{\times}10^{-9}$ M (${\pm}$0.6%) using DPV. The optimum analytical condition of Ag(I) ion was determined as follows: pH 7, 20 minutes of deposition time, and 50% (w/w) cinchonidine to carbon powder composition of electrode. The interference effect of various metal ions added to the deposition solution was also studied. The peak current of Ag(I) ion except Hg(II) ion was decreased roughly 25% compare to Ag(I) ion only. When Mn(II) ion was present in sample solution at pH 9, shown a large interference effect.

  • PDF

Study on Electrochemical Properties of TBT(Tributyltin)

  • Park, Chil-Nam;Yang, Hyo-Kyung
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_4
    • /
    • pp.173-179
    • /
    • 2001
  • The chemical behavior and properties of the redox state of environmental pollutants was investigated using electrochemical methods. The purpose was to measure the variations in the redox reaction of differential pulse polarograms and cyclic voltammograms. The results observed the influences on redox potential and current of various factors including concentration, temperature, salt, and pH. These were established factors as the effect of the redox reaction. It can be clearly recognized that the electrode reaction are from reversible to irreversible processes. Also, it was mixing with reaction current controlled.

  • PDF

Electrochemical Study on the Coumarin Derivatives

  • Kim, Il Kwang;Chun, Hyun Ja;Paik, Soon Ok;Park, Sung Woo
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.655-661
    • /
    • 1995
  • The electrochemical reduction of coumarin derivatives in 0.1M TEAP acetonitrile solution was investigated by the direct current, differential pulse polarography, cyclic voltammetry and controlled potential coulometry. The electrochemical reduction of 7-acetoxy-4-bromomethyl-coumarin(ABMC) was proceeded as an irreversible three steps(-0.58, -1.63 and -2.25 volts) of electrochemical transfer before chemical reaction. The solution color turned to yellow after the carboxyl group was reduced at 2nd step(-1.63 volts vs. Ag-AgCl) and the change in color was independant to the bromo group. Upon the basis of the results on the products analysis and the interpretaton of polarograms, a possible electrochemical reaction mechanism was suggested.

  • PDF

A Simple Fast Analog Storage Device and Its Applications (간단한 Analog 기억장치의 제작과 그 응용)

  • In Tae Bae;Q. Won Choi;Ha Suck Kim
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.103-109
    • /
    • 1981
  • An inexpensive, yet convenient analog storage device was constructed. Sequentially MOSFET-switched 20 sample and holds equipped with a high input impedance preamplifier were parallelly matched to the digitally controlled shift register system in variable speeds up to 3 kHz. To verify its usefulness, square wave train, sinusiodal wave and some electrochemical data, such as fast-scan voltammogram and transient current-time curves of differential pulse polarography were tested.

  • PDF

Chemical Properties of Co(II) Compound Containing Endocrine Disrupter, Bis-Phenol A

  • Park, Chil-Nam
    • Journal of Environmental Science International
    • /
    • v.11 no.2
    • /
    • pp.131-137
    • /
    • 2002
  • The chemical behavior and properties on the redox state of environmental pollutant has been investigated by electrochemical methods. We carried out to measure the variations in the redox reaction of differential pulse polarogram and cyclic voltammogram. The results observed the influences on redox potential and current of various factors with temperature and pH. These were established factors as the effect of the redox reaction. It can be clearly recognized that the electrode reaction are from qusi-reversible to irreversible processes. Also, it was mixing with reaction current controlled. The bits-phenol A in the waste water was made to compound with cobalt ion and it take away from the separation into compound. The $Co(BPA)_2$ compound was not found to be dissociation in waste water. However, this compound is avery unstable(K=1.02) and for a while, it was to be a dissociation. Therefore, we believed that it was likely to a toxic substance.

Differential Pulse Voltammetric Determination of Copper(II) Using Glassy Carbon Electrodes Modified with Nafion-DTPA-Glycerol (Nafion-DTPA-Glycerol이 수식된 유리탄소전극을 사용한 미분펄스 전압전류법에 의한 구리(II)이온의 측정)

  • 박찬주;박은희;정근호
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.2
    • /
    • pp.115-122
    • /
    • 2004
  • A glassy carbon electrode(GCE) modified with nafion-DTPA (diethylene triamine-pentaacetic acid)-glycerol is used for the highly selective and sensitive determination of a trace amount of Cu(II). Various experimental parameters, which influenced the response of nafion-DTPA-glycerol modified electrode to Cu(II), are optimized. The Copper(II) is accumulated on the electrode surface by the formation of the complex in an open circuit, and the resulting surface is characterized by medium exchange, electrochemical reduction, and differential pulse voltammetry(DPV). The electrochemical response is evaluated with respect to concentration of modifier, pH and preconcentration time, quiet time, copper(II) concentration, and other variables. A linear range is obtained in the concentration range 1.0${\times}$10$^{-8}$ M-1.0${\times}$10$^{-6}$ MCu(II) with 7 min preconcentration time. The detection limit(3s) is as low as 2.36${\times}$10$^{-8}$ M (1.50 ppb).

Differential Pulse Voltammetric Determination of Co(II) Ion with a Chemically Modified Carbon Paste Electrode Containing ${\iota}$ -Sparteine (${\iota}$ -Sparteine으로 변성된 Carbon Paste 전극을 사용한 Co(II) 이온의 펄스 차이 전압-전류법 정량)

  • Eu-Duck Jeong;Mi-Sook Won;Deog-Su Park;Yoon-Bo Shim;Sung-Nak Choi
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.10
    • /
    • pp.881-887
    • /
    • 1993
  • A cobalt(II) ion-selective carbon-paste electrode (CPE) was constructed with ${\iota}$-sparteine. Cobalt(II) ion in aqueous solution was chemically deposited through the complexation with ${\iota}$-sparteine onto the CPE. The surface of CPEs were characterized by cyclic voltammetry and differential pulse voltammetry in an acetate buffer solution, separately. Exposure of the CPEs to an acid solution could regenerate surface to reuse it for the deposition. In more than 5 deposition / measurement / regeneration cycles, the response was reproducible and linear up to $5.0{\times}10^{-6}$M with linear sweep voltammetry. The peaks at 0.17V / 0.27V were correspond to the redox of Co(II)-SP complex deposited on CPE. The anodic peak of which appeared after scan over the cathodic peak of 0.17 V to more negative scan. In case of using the differencial pulse voltammetry (DPV), we have obtained the linear response $2.0{\times}10^{-7}$M with relative standard deviation ${\pm}5.6%$. The detection limit was $1.0{times}10^{-7}$M for 20 minutes of the deposition. We have also investigated the interference effect of various metal ions, which are expected to form the complex with the ligand on the electrode.

  • PDF

Determination of Traces of Selenium in Plant Materials by Cathodic Stripping Voltammetry (Cathodic Stripping Voltammetry법에 의한 식물체 중 극미량 셀렌의 분석)

  • 문동철;홍성화;박만기;김중기;이광우
    • YAKHAK HOEJI
    • /
    • v.29 no.3
    • /
    • pp.144-151
    • /
    • 1985
  • Cathodic stripping voltammetric determination of traces of selenium in plant samples was studied. Stripping peak of selenium (IV) from Cu-Se intermettalic deposit in acidic media containing copper (II) ion is specific, highly sensitive and well defined, is successfully used for the quantitative determination of selenuin down to the level of 1ng/ml. Sample is burnt in a calorimeter bomb under the oxygen pressure of 40atm. and the selenium is absorbed in 0.1M NaOH. After the solution is filtrated, concentrated and acidified with HCl, then passed through a column of cation exchange resin in the $H^{+}$ form(Dowex 50X-8). The column eluate is analyzed for selenium by differential pulse cathodic stripping voltammetric method. Analytical results of selenium for NBS SMR is well agreement with the certified values. Results are given for a series of plant materials.

  • PDF

A New Unsymmetrical Zinc Phthalocyanine as Photosensitizers for Dye-sensitized Solar Cells

  • Zhang, Dan;Zhang, Xue-Jun;Zhang, Lei;Mao, Li-Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1225-1230
    • /
    • 2012
  • A new unsymmetrical zinc phthalocyanine has been designed and synthesized based on the 'push-pull' and extended ${\pi}$-conjugation concept for the dye-sensitized solar cells. Three tert-butoxy groups, which act as electron releasing ('push'), enhance the solubility of phthalocyanine in common organic solvents and reduce the aggregation. Hydroxy substituted 9,10-anthraquinones act as electron acceptors ('pull') for the study of photoinduced electron transfer processes as well as grafting onto nanocrystalline $TiO_2$. The new unsymmetrical zinc phthalocyanine was fully characterized by FTIR, UV-vis, $^1H$ NMR, cyclic voltammetry and differential pulse voltammetry. The new sensitizer was tested in dye-sensitized solar cells, and gave a better performance.