• 제목/요약/키워드: differential column shortening

검색결과 35건 처리시간 0.023초

시공 공정에 따른 건축 구조물의 구조해석 및 수직부재의 부등변형 (Structural Analysis for Building Structures reflecting Differential Column Shortening based upon Construction Sequence)

  • 조상규;이형우;최창식
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.333-341
    • /
    • 1998
  • The general method of structural analysis for building structures has been based upon the assumption that all dead loads are imposed on a building simultaneously throughout the entire structure. In reality, buildings are built floor by floor or a few floors at a time. The construction dead load is applied gradually onto the structure as the structure is being erected. The prevailing commercial software for structural analysis used to date have resulted in the representation of inaccurate structural behaviors. The actual construction sequence and the loading of the structure ere not properly represented in the analysis. This paper identifies the source of the errors and develops the algorithm to account for the differential column shortening due to construction dead load based upon a given construction sequence

  • PDF

고층건물 기둥 부등축소량의 최적보정기법 정식화 (Formulation of an Optimal Compensation Method for Differential Column Shortening in Highrise Buildings)

  • 김기봉;박효선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.370-377
    • /
    • 1999
  • Differential shortenings of columns in a highrise building must be considered in the design process to avoid unexpected damages in structural and nonstructural elements. While research activity has been reported in the literature on the development of estimation algorithms or prediction procedures of elastic and inelastic column shortenings, no algorithms or methods for compensation of differential shortenings. In this paper a compensation method for differential column shortenings in a high-rise is formulated as an optimization problem The simulated annealing algorithm is used to find optimal solutions. The performance of the proposed method is presented by using the well known examples developed by PCA.

  • PDF

고층건물의 부등축소량 예측 및 계측 (Prediction and Measurement of Differential Column Shortening in High-rise Building Structures)

  • 정금진;양근혁;이정한;홍재원;이원호;정헌수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.511-516
    • /
    • 2000
  • A Hybrid Wall System(HWS) building, Kolon Bundang Tripolis was instrumented to measure the vertical deformation of core-walls and columns. The vertical shortening of individual members were measured at selected floor levels such as 1F, 12F, 25F, and 34F. The measurement has been taken during one year after the construction was started. Together with the measurement, concrete property tests were performed in the laboratory using the concrete obtained in the field. The measured vertical shortenings were compared with the calculated prediction values and the satisfactory agreement was obtained.

  • PDF

Prediction of Time-dependent Lateral Movement Induced by Differential Shortening in Tall Buildings Using Construction Stage Analysis

  • Ha, Taehun;Kim, Sangdae;Lee, Sungho
    • 국제초고층학회논문집
    • /
    • 제6권1호
    • /
    • pp.11-19
    • /
    • 2017
  • High-rise buildings move during construction due to time-dependent material properties of concrete (creep and shrinkage), construction sequences, and structural shapes. The building movements, including vertical and horizontal displacements, result from the sum of axial and lateral deformation of vertical members at each level. In addition to the vertical shortenings, the lateral movement induced by differential shortening can have adverse effects on the construction tolerance and serviceability of non-structural elements such as elevators and curtain walls. In this study a construction stage analysis method is developed to predict lateral movement induced by shortening, including the effect of creep and shrinkage. The algorithm of construction stage analysis is combined with the FE analysis program. It is then applied to predict lateral movement of a 58-story reinforced concrete building that was constructed in Kuala Lumpur, Malaysia. Gravity induced lateral movement of this building is predicted by the construction stage analysis. A field three-dimensional laser scanning survey is carried out to verify the prediction results, and satisfactory agreement is obtained.

초고층 건물의 시공 중 안정성 검토를 위한 시공단계해석 (Construction Sequence Analysis for Checking Stability in High-Rise Building under Construction)

  • 김재요
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.618-623
    • /
    • 2008
  • Due to recent trends of the atypical plan shapes and the zoning construction in high-rise buildings, the building stability under construction is arising as an important issue for design and construction plan. To ensure the stability under construction, the differential column shortening and the lateral movements with unbalanced distributions of self-weight of structure members and the load flows before completion of member connections and lateral load resisting system should be checked by construction sequence analysis. This paper presents the scheme of zone-based construction sequence analysis, to check the stability of high-rise building under construction. This scheme is applied to the construction sequence analysis for real high-rise building under construction.

  • PDF

비탄성 부등기둥축소를 고려한 초고층 구조 해석 (Structural Analysis of a Tall Building Considering Inelastic Differential Column Shortening)

  • 김한수;정세훈;신승학
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2009년도 춘계 학술대회 제21권1호
    • /
    • pp.175-176
    • /
    • 2009
  • 본 연구는 설계단계에서 부등축소에 의해 수평부재에 발생하는 추가 내력을 예측할 수 있는 방법을 제안한다. 또한 EMM, AEMM을 활용하여 구한 유효탄성계수 및 재령보정 유효탄성계수를 수평부재에 적용하는 방법은 수평부재의 내력(모멘트)에 있어 정밀해석결과와 유사한 해석결과를 얻을 수 있었다.

  • PDF

Simplified sequential construction analysis of buildings with the new proposed method

  • Afshari, Mohammad Jalilzadeh;Kheyroddin, Ali;Gholhaki, Majid
    • Structural Engineering and Mechanics
    • /
    • 제63권1호
    • /
    • pp.77-88
    • /
    • 2017
  • Correction Factor Method (CFM) is one of the earliest methods for simulating the actual behavior of structure according to construction sequences and practical implementation steps of the construction process which corrects the results of the conventional analysis just by the application of correction factors. The most important advantages of CFM are the simplicity and time-efficiency of the computations in estimating the final modified forces of the beams. However, considerable inaccuracy in evaluating the internal forces of the other structural members obtained by the moment equilibrium equation in the connection joints is the biggest disadvantage of the method. This paper proposes a novel method to eliminate the aforementioned defect of CFM by using the column shortening correction factors of the CFM to modify the axial stiffness of columns. In this method, the effects of construction sequences are considered by performing a single step analysis which is more time-efficient when compared to the staged analysis especially in tall buildings with higher number of elements. In order to validate the proposed method, three structures with different properties are chosen and their behaviors are investigated by application of all four methods of: conventional one-step analysis, sequential construction analysis (SCA), CFM, and currently proposed method.

Outrigger Systems for Tall Buildings in Korea

  • Chung, Kwangryang;Sunu, Wonil
    • 국제초고층학회논문집
    • /
    • 제4권3호
    • /
    • pp.209-217
    • /
    • 2015
  • Outrigger systems are highly efficient since they utilize the perimeter zone to resist lateral forces, similar to tubular systems. The entire structural weight can be reduced due to the system's significant lateral strength. Therefore, it is the most commonly selected structural system for tall and supertall buildings built in recent years. In this paper, issues regarding the differential shortening effect during construction of the outrigger system and the special joints used to solve these issues will be addressed. Additionally, the characteristics of wind and seismic loads in Korea will be briefly discussed. Lastly, buildings in Korea using an outrigger as their major structural system will be introduced and the structural role of the system will be analyzed.

부등수분분포를 고려한 SRC 기둥의 축소량에 관한 연구 (Column Shortening of SRC Columns Considering the Differential Moisture Distribution)

  • 설현철;김윤용;권승희;김한수;김진근
    • 콘크리트학회논문집
    • /
    • 제18권1호
    • /
    • pp.29-36
    • /
    • 2006
  • 초고층 건물에서 널리 사용되고 있는 SRC 기둥은 콘크리트의 크리프와 건조수축으로 인하여 시간 의존적인 거동을 보인다. 이러한 장기거동은 초고층 구조물에 기둥의 부등 축소량을 야기시키게되어 심각한 사용성 문제와 구조적 문제를 유발하게 되므로 구조물의 장기 변형을 정확히 예측하는 것이 중요하다. 최근 연구보고에 따르면 SRC 기둥의 장기변형은 RC 기둥의 장기변형과 매우 다른 양상을 보이고 있다. 따라서 SRC 기둥의 축소량을 정량적으로 예측하기 위해서는 기존의 평균적인 개념의 해석방법과는 다른 SRC 기둥의 수분확산 특성을 고려할 수 있는 새로운 해석방법이 요구된다. 이 연구에서는 RC 기둥과 SRC 기둥이 보이는 장기거동이 서로 다른 원인을 수분확산 특성에 주안점을 두어 검토하였다. SRC 기둥은 내부 형강의 플랜지가 콘크리트의 수분확산을 제한하게 되어 RC 기둥과는 다른 수분분포를 보이게 되며, 이러한 부등수분분포의 영향으로 인해 건조수축과 건조크리프의 양이 감소하게 된다. 따라서 SRC 기둥의 축소량을 보다 합리적이고 정확히 예측하기 위해서는 수분확산 해석을 통해 수분분포를 파악하고 이를 건조수축과 건조크리프 해석에 적용함으로써 단면 내부의 부등수분분포를 고려하여야 한다.