• Title/Summary/Keyword: differential column shortening

Search Result 35, Processing Time 0.026 seconds

Structural Analysis for Building Structures reflecting Differential Column Shortening based upon Construction Sequence (시공 공정에 따른 건축 구조물의 구조해석 및 수직부재의 부등변형)

  • 조상규;이형우;최창식
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.333-341
    • /
    • 1998
  • The general method of structural analysis for building structures has been based upon the assumption that all dead loads are imposed on a building simultaneously throughout the entire structure. In reality, buildings are built floor by floor or a few floors at a time. The construction dead load is applied gradually onto the structure as the structure is being erected. The prevailing commercial software for structural analysis used to date have resulted in the representation of inaccurate structural behaviors. The actual construction sequence and the loading of the structure ere not properly represented in the analysis. This paper identifies the source of the errors and develops the algorithm to account for the differential column shortening due to construction dead load based upon a given construction sequence

  • PDF

Formulation of an Optimal Compensation Method for Differential Column Shortening in Highrise Buildings (고층건물 기둥 부등축소량의 최적보정기법 정식화)

  • 김기봉;박효선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.370-377
    • /
    • 1999
  • Differential shortenings of columns in a highrise building must be considered in the design process to avoid unexpected damages in structural and nonstructural elements. While research activity has been reported in the literature on the development of estimation algorithms or prediction procedures of elastic and inelastic column shortenings, no algorithms or methods for compensation of differential shortenings. In this paper a compensation method for differential column shortenings in a high-rise is formulated as an optimization problem The simulated annealing algorithm is used to find optimal solutions. The performance of the proposed method is presented by using the well known examples developed by PCA.

  • PDF

Prediction and Measurement of Differential Column Shortening in High-rise Building Structures (고층건물의 부등축소량 예측 및 계측)

  • 정금진;양근혁;이정한;홍재원;이원호;정헌수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.511-516
    • /
    • 2000
  • A Hybrid Wall System(HWS) building, Kolon Bundang Tripolis was instrumented to measure the vertical deformation of core-walls and columns. The vertical shortening of individual members were measured at selected floor levels such as 1F, 12F, 25F, and 34F. The measurement has been taken during one year after the construction was started. Together with the measurement, concrete property tests were performed in the laboratory using the concrete obtained in the field. The measured vertical shortenings were compared with the calculated prediction values and the satisfactory agreement was obtained.

  • PDF

Prediction of Time-dependent Lateral Movement Induced by Differential Shortening in Tall Buildings Using Construction Stage Analysis

  • Ha, Taehun;Kim, Sangdae;Lee, Sungho
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.1
    • /
    • pp.11-19
    • /
    • 2017
  • High-rise buildings move during construction due to time-dependent material properties of concrete (creep and shrinkage), construction sequences, and structural shapes. The building movements, including vertical and horizontal displacements, result from the sum of axial and lateral deformation of vertical members at each level. In addition to the vertical shortenings, the lateral movement induced by differential shortening can have adverse effects on the construction tolerance and serviceability of non-structural elements such as elevators and curtain walls. In this study a construction stage analysis method is developed to predict lateral movement induced by shortening, including the effect of creep and shrinkage. The algorithm of construction stage analysis is combined with the FE analysis program. It is then applied to predict lateral movement of a 58-story reinforced concrete building that was constructed in Kuala Lumpur, Malaysia. Gravity induced lateral movement of this building is predicted by the construction stage analysis. A field three-dimensional laser scanning survey is carried out to verify the prediction results, and satisfactory agreement is obtained.

Construction Sequence Analysis for Checking Stability in High-Rise Building under Construction (초고층 건물의 시공 중 안정성 검토를 위한 시공단계해석)

  • Kim, Jae-Yo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.618-623
    • /
    • 2008
  • Due to recent trends of the atypical plan shapes and the zoning construction in high-rise buildings, the building stability under construction is arising as an important issue for design and construction plan. To ensure the stability under construction, the differential column shortening and the lateral movements with unbalanced distributions of self-weight of structure members and the load flows before completion of member connections and lateral load resisting system should be checked by construction sequence analysis. This paper presents the scheme of zone-based construction sequence analysis, to check the stability of high-rise building under construction. This scheme is applied to the construction sequence analysis for real high-rise building under construction.

  • PDF

Structural Analysis of a Tall Building Considering Inelastic Differential Column Shortening (비탄성 부등기둥축소를 고려한 초고층 구조 해석)

  • Kim, Han-Soo;Jeomg, Se-Hun;Shin, Seung-Hak
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.175-176
    • /
    • 2009
  • An improved column shortening analysis method which can be used in designing the horizontal members has been proposed. If you use this analysis method which is used effective modulus method by EMM or AEMM, you will get more exactly moments on the horizontal members.

  • PDF

Simplified sequential construction analysis of buildings with the new proposed method

  • Afshari, Mohammad Jalilzadeh;Kheyroddin, Ali;Gholhaki, Majid
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.77-88
    • /
    • 2017
  • Correction Factor Method (CFM) is one of the earliest methods for simulating the actual behavior of structure according to construction sequences and practical implementation steps of the construction process which corrects the results of the conventional analysis just by the application of correction factors. The most important advantages of CFM are the simplicity and time-efficiency of the computations in estimating the final modified forces of the beams. However, considerable inaccuracy in evaluating the internal forces of the other structural members obtained by the moment equilibrium equation in the connection joints is the biggest disadvantage of the method. This paper proposes a novel method to eliminate the aforementioned defect of CFM by using the column shortening correction factors of the CFM to modify the axial stiffness of columns. In this method, the effects of construction sequences are considered by performing a single step analysis which is more time-efficient when compared to the staged analysis especially in tall buildings with higher number of elements. In order to validate the proposed method, three structures with different properties are chosen and their behaviors are investigated by application of all four methods of: conventional one-step analysis, sequential construction analysis (SCA), CFM, and currently proposed method.

Outrigger Systems for Tall Buildings in Korea

  • Chung, Kwangryang;Sunu, Wonil
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.3
    • /
    • pp.209-217
    • /
    • 2015
  • Outrigger systems are highly efficient since they utilize the perimeter zone to resist lateral forces, similar to tubular systems. The entire structural weight can be reduced due to the system's significant lateral strength. Therefore, it is the most commonly selected structural system for tall and supertall buildings built in recent years. In this paper, issues regarding the differential shortening effect during construction of the outrigger system and the special joints used to solve these issues will be addressed. Additionally, the characteristics of wind and seismic loads in Korea will be briefly discussed. Lastly, buildings in Korea using an outrigger as their major structural system will be introduced and the structural role of the system will be analyzed.

Column Shortening of SRC Columns Considering the Differential Moisture Distribution (부등수분분포를 고려한 SRC 기둥의 축소량에 관한 연구)

  • Seol, Hyun-Cheol;Kim, Yun-Yong;Kwon, Seung-Hee;Kim, Han-Soo;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.29-36
    • /
    • 2006
  • Steel reinforced concrete(SRC) columns, which have been widely employed in high-rise buildings, exhibit a time-dependent behavior because of creep and shrinkage of concrete. This long-term behavior may cause a serious serviceability problem in structural systems, so it is very important to predict the deformation due to creep and shrinkage of concrete. However, it was found from the previous experimental studies that the long-term deformation of SRC columns was quite dissimilar from that of RC columns. A new method is required to quantitatively predict the long-term deformation of SRC columns. In this study, the causes of the discrepancy between the behaviors of RC and SRC columns are investigated and discussed. SRC columns exhibit a time-dependent relative humidity distribution in a cross section differently from that of reinforced concrete(RC) columns owing to the presence of a inner steel plate, which interferes with the moisture diffusion of concrete. This relative humidity distribution may reduce the drying shrinkage and the drying creep in comparison with RC columns. Therefore it is suggested that the differential moisture distribution should be taken into account in order to reasonably predict column shortening of SRC columns.