• Title/Summary/Keyword: differential coefficient

Search Result 457, Processing Time 0.023 seconds

Crystallization of Passivation Glass for Electronic Devices (전자장치용 Passivation 유리의 결정화에 관한 연구)

  • 손명모;박희찬;이헌수
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.2
    • /
    • pp.107-114
    • /
    • 1993
  • Zinc-Borosilicate(ZnO 65.0wt%, B2O3 21.5wt%, SiO2 9.0wt%, PbO or tiO2 4wt%) passivation glasses were studied using differential thermal analysis(DTA), scanning electron microscopy(SEM) observations, X-ray diffraction (XRD) patterns and measurement of thermal expansion coefficients. Passivation glasses containing 4wt% TiO2 and 4wt% PbO had crystallization temperature of 680~73$0^{\circ}C$ and major crystalline phases were identified by X-ray diffraction as $\alpha$-ZnO.B2O3 and $\alpha$-5ZnO.2B2O3. As increasing firing temperature, the size of crystalline phases increased by observation of SEM. The thermal expansion coefficient of crystallized glass frits was smaller than that of unfired glass.

  • PDF

Evaluation of Internally Cured Concrete Pavement Using Environmental Responses and Critical Stress Analysis

  • Kim, Kukjoo;Chun, Sanghyun
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.4
    • /
    • pp.463-473
    • /
    • 2015
  • Three full-scale instrumented test slabs were constructed and tested using a heavy vehicle simulator (HVS) to evaluate the structural behavior of internally cured concrete (ICC) for use in pavements under Florida condition. Three mix designs selected from a previous laboratory testing program include the standard mixture with 0.40 water-cement ratio, the ICC with 0.32 water-cement ratio, and the ICC mixture with 0.40 water-cement ratio. Concrete samples were prepared and laboratory tests were performed to measure strength, elastic modulus, coefficient of thermal expansion and shrinkage properties. The environmental responses were measured using strain gages, thermocouples, and linear variable differential transformers instrumented in full-scale concrete slabs. A 3-D finite element model was developed and calibrated using strain data measured from the full-scale tests using the HVS. The results indicate that the ICC slabs were less susceptible to the change of environmental conditions and appear to have better potential performance based on the critical stress analysis.

Fault Detection of an Intelligent Cantilever Beam with Piezoelectric Materials

  • Kwon, Tae-Kyu;Lim, Suk-Jeong;Yu, Kee-Ho;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.97.2-97
    • /
    • 2002
  • A method for the non-destructive detection of damage using parameterized partial differential equations and Galerkin approximation techniques is presented. This method provides the theoretical and experimental verification of a nondestructive time domain approach to examine structural damage in smart structure. The time histories of the vibration response of structure were used to identify the presence of damage. Damage in a structure causes changes in the physical coefficients of mass density, elastic modulus and damping coefficient. This paper examines the beam-like structures with PVDF sensor and PZT actuator to perform identification of those physical parameters and to detect the...

  • PDF

Fabrication and Characteristics of the Integrated Hall Sensor IC For Driving Fan Motors (팬 모터 구동을 위한 집적화된 홀 센서 IC의 제작 및 특성)

  • 이철우
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.73-76
    • /
    • 2002
  • In this paper we present an integrated Hail sensor It for fan motors, fabricated in industrial bipolar process. As a discrete Hall sensor and signal processing circuitry In the fan motor system were Integrated into single chip a temperature dependence of Hall sensitivity and Hall offset voltage can be compensated and cancelled by on-chip circuitry. We Propose a novel temperature compensation of Hall sensitivity with negative temperature coefficient (TC) using the differential amplifier gain with Positive TC. After a package of the chip was sealed using a plastic Package 20 Pins, the thermal and magnetic characteristics were investigated. The obtained experimental results are in agreement with analytical predictions and have more excellent performance than\ulcorner conventional the fan motor system using discrete Hall sensor.

  • PDF

A Study on Wind Pressure inside Cheonan High Speed Train Station (고속전철 천안역사 내부의 풍압연구)

  • Won Chan-Shik;Kim Sa Ryang;Hur N.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.843-846
    • /
    • 2002
  • Unlike ordinary train, the HST(High Speed Train) is operated at a very high speed, which may cause pressure transient problems when the HST is passing through a station. In the present study, the wind pressure caused by the passing HST was measured in the Cheonan HST station and compared with the numerical simulations. For the measurement, the HST was passing through the station at speeds of 240 km/h north bound and 150 km/h south bound. MEMS based differential pressure transducers are used to measure pressure variation at various locations in the station. It is shown from the results that measured data are in good agreement with CFD simulation with moving mesh technique for the train movement. With the present validation of CFD simulation, the CFD simulation may effectively aid the design of future HST station.

  • PDF

A Study on the Radiation Heat Transfer Characteristics of Liquid Droplet Radiator (액적방열기의 복사열전달 특성에 관한 연구)

  • 김금무;김용모;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.32-40
    • /
    • 1994
  • The radiative heat transfer analysis in particle layer has an inherent difficulty in treating the governing integro-differential equations, which are derived from the remote effects. Most of the existing analyses are limited to the one dimensional system, taking into account only absorption or isotropic scatting of solid particles. Fortunately, a new Monte Carlo Simulation method is recently developed to analyse multidimensional radiative heat transfer in particles with anisotropically scatting. By this method, the present study analyses the radiative heat transfer in dispersed particles through the numerous droplets in the liquid droplet radiator to develop a technique of liquid droplet radiator. Consequently, knows that the radiative heat flux in particle layer is influenced by exitinction coefficient, optical thickness and surface area of particles in the system.

  • PDF

Anaysis and design of inhomogeneous optical filters using tapered transmission line theory (테이퍼 전송선 원리를 이용한 불균일 굴절률 광여파기의 해석 및 설계)

  • 권영재;장호성;임성규;오명환
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.9
    • /
    • pp.36-42
    • /
    • 1997
  • Optical filters with graded index profiles are designed by applying the fourier transform to a riccati equation which governs the reflection and transmission characteristics of inhomogeneous refractive index distributions. The inhomogeneous refractive index profile of an optical filter with specified target spectrum is obtained through iterations. The spectra response of the inhomogeneous refractive index layers are analyzed by using runge-dutta numerical method to solve the differential euations of the amplitude and the phase of reflection coefficient derived from the riccati equation and the results are in good agreement with the resutls obtained by using matrix method.

  • PDF

Effect of variable viscosity on combined forced and free convection boundary-layer flow over a horizontal plate with blowing or suction

  • Mahmoud, Mostafa A.A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.1
    • /
    • pp.57-70
    • /
    • 2007
  • The effects of variable viscosity, blowing or suction on mixed convection flow of a viscous incompressible fluid past a semi-infinite horizontal flat plate aligned parallel to a uniform free stream in the presence of the wall temperature distribution inversely proportional to the square root of the distance from the leading edge have been investigated. The equations governing the flow are transformed into a system of coupled non-linear ordinary differential equations by using similarity variables. The similarity equations have been solved numerically. The effect of the viscosity temperature parameter, the buoyancy parameter and the blowing or suction parameter on the velocity and temperature profiles as well as on the skin-friction coefficient and the Nusselt number are discussed.

  • PDF

Effect of temperature and spring-mass systems on modal properties of Timoshenko concrete beam

  • Liu, Hanbing;Wang, Hua;Tan, Guojin;Wang, Wensheng;Liu, Ziyu
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.389-400
    • /
    • 2018
  • An exact solution for the title problem was obtained in closed-form fashion considering general boundary conditions. The expressions of moment, shear and shear coefficient (or shear factor) of cross section under the effect of arbitrary temperature distribution were first derived. In view of these relationships, the differential equations of Timoshenko beam under the effect of temperature were obtained and solved. Second, the characteristic equations of Timoshenko beam carrying several spring-mass systems under the effect of temperature were derived based on the continuity and force equilibrium conditions at attaching points. Then, the correctness of proposed method was demonstrated by a Timoshenko laboratory beam and several finite element models. Finally, the influence law of different temperature distribution modes and parameters of spring-mass system on the modal characteristics of Timoshenko beam had been studied, respectively.

Solving Dynamic Equation Using Combination of Both Trigonometric and Hyperbolic Cosine Functions for Approximating Acceleration

  • Quoc Do Kien;Phuoc Nguyen Trong
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.481-486
    • /
    • 2005
  • This paper introduces a numerical method for integration of the linear and nonlinear differential dynamic equation of motion. The variation of acceleration in two time steps is approximated as a combination of both trigonometric cosine and hyperbolic cosine functions with weighted coefficient. From which all necessary formulae are elaborated for the direct integration of the governing equation. A number of linear and nonlinear dynamic problems with various degrees of freedom are analysed using both the suggested method and Newmark method for the comparison. The numerical results show high advantages and effectiveness of the new method.