• Title/Summary/Keyword: different ranking techniques

Search Result 15, Processing Time 0.022 seconds

FUZZY TRANSPORTATION PROBLEM IS SOLVED UTILIZING SIMPLE ARITHMETIC OPERATIONS, ADVANCED CONCEPT, AND RANKING TECHNIQUES

  • V. SANGEETHA;K. THIRUSANGU;P. ELUMALAI
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.2
    • /
    • pp.311-320
    • /
    • 2023
  • In this article, a new penalty and different ranking algorithms are used to find the lowest transportation costs for the fuzzy transportation problem. This approach utilises different ranking techniques when dealing with triangular fuzzy numbers. Also, we find that the fuzzy transportation solution of the proposed method is the same as the Fuzzy Modified Distribution Method (FMODI) solution. Finally, examples are used to show how a problem is solved.

Correlation between different methodologies used to evaluate the marginal adaptation of proximal dentin gingival margins elevated using a glass hybrid

  • Hoda S. Ismail;Brian R. Morrow;Ashraf I. Ali;Rabab El. Mehesen;Franklin Garcia-Godoy;Salah H. Mahmoud
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.4
    • /
    • pp.36.1-36.17
    • /
    • 2022
  • Objectives: This study aimed to evaluate the effect of aging on the marginal quality of glass hybrid (GH) material used to elevate dentin gingival margins, and to analyze the consistency of the results obtained by 3 in vitro methods. Materials and Methods: Ten teeth received compound class II cavities with subgingival margins. The dentin gingival margins were elevated with GH, followed by resin composite. The GH/gingival dentin interfaces were examined through digital microscopy, scanning electron microscopy (SEM) using resin replicas, and according to the World Dental Federation (FDI) criteria. After initial evaluations, all teeth were subjected to 10,000 thermal cycles, followed by repeating the same marginal evaluations and energy dispersive spectroscopy (EDS) analysis for the interfacial zone of 2 specimens. Marginal quality was expressed as the percentage of continuous margin at ×200 for microscopic techniques and as the frequency of each score for FDI ranking. Data were analyzed using the paired sample t-test, Wilcoxon signed-rank test, and Pearson and Spearmen correlation coefficients. Results: None of the testing techniques proved the significance of the aging factor. Moderate and strong significant correlations were found between the testing techniques. The EDS results suggested the presence of an ion-exchange layer along the GH/gingival dentin interface of aged specimens. Conclusions: The marginal quality of the GH/dentin gingival interface defied aging by thermocycling. The replica SEM and FDI ranking results had stronger correlations with each other than either showed with the digital microscopy results.

Optimal monitoring instruments selection using innovative decision support system framework

  • Masoumi, Isa;Ahangari, Kaveh;Noorzad, Ali
    • Smart Structures and Systems
    • /
    • v.21 no.1
    • /
    • pp.123-137
    • /
    • 2018
  • Structural monitoring is the most important part of the construction and operation of the embankment dams. Appropriate instruments selection for dams is vital, as inappropriate selection causes irreparable loss in critical condition. Due to the lack of a systematic approach to determine adequate instruments, a framework based on three comparable Multi-Attribute Decision Making (MADM) methods, which are VIKOR, technique of order preference by similarity to ideal solution (TOPSIS) and Preference ranking organization method for enrichment evaluation (PROMETHEE), has been developed. MADM techniques have been widely used for optimizing priorities and determination of the most suitable alternatives. However, the results of the different methods of MADM have indicated inconsistency in ranking alternatives due to closeness of judgements from decision makers. In this study, 9 criteria and 42 geotechnical instruments have been applied. A new method has been developed to determine the decision makers' importance weights and an aggregation method has been introduced to optimally select the most suitable instruments. Consequently, the outcomes of the aggregation ranking correlate about 94% with TOPSIS and VIKOR, and 83% with PROMETHEE methods' results providing remarkably appropriate prioritisation of instruments for embankment dams.

An Efficient Search Method of Product Reviews using Opinion Mining Techniques (오피니언 마이닝 기술을 이용한 효율적 상품평 검색 기법)

  • Yune, Hong-June;Kim, Han-Joon;Chang, Jae-Young
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.2
    • /
    • pp.222-226
    • /
    • 2010
  • With the continuously increasing volume of e-commerce transactions, it is now popular to buy some products and to evaluate them on the World Wide Web. The product reviews are very useful to customers because they can make better decisions based on the indirect experiences obtainable through these reviews. However, since online shopping malls do not provide ranking results, it is not easy for users to read all the relevant review documents effectively. Product reviews include subjective and emotional opinions. Thus, the review search is different from the general web search in terms of ranking strategy. In this paper, we propose an effective method of ranking the reviews that can reflect user's intention by using opinion mining techniques. The proposed method analyzes product reviews with query words, and sentimental polarity of subjective opinions. Through diverse experiments, we show that our proposed method outperforms conventional ones.

Optimization of ferrochrome slag as coarse aggregate in concretes

  • Yaragal, Subhash C.;Kumar, B. Chethan;Mate, Krishna
    • Computers and Concrete
    • /
    • v.23 no.6
    • /
    • pp.421-431
    • /
    • 2019
  • The alarming rate of depletion of natural stone based coarse aggregates is a cause of great concern. The coarse aggregates occupy nearly 60-70% by volume of concrete being produced. Research efforts are on to look for alternatives to stone based coarse aggregates from sustainability point of view. Response surface methodology (RSM) is adopted to study and address the effect of ferrochrome slag (FCS) replacement to coarse aggregate replacement in the ordinary Portland cement (OPC) based concretes. RSM involves three different factors (ground granulated blast furnace slag (GGBS) as binder, flyash (FA) as binder, and FCS as coarse aggregate), with three different levels (GGBS (0, 15, and 30%), FA (0, 15, and 30%) and FCS (0, 50, and 100%)). Experiments were carried out to measure the responses like, workability, density, and compressive strength of FCS based concretes. In order to optimize FCS replacement in the OPC based concretes, three different traditional optimization techniques were used (grey relational analysis (GRA), technique for order of preference by similarity (TOPSIS), and desirability function approach (DFA)). Traditional optimization techniques were accompanied with principal component analysis (PCA) to calculate the weightage of responses measured to arrive at the final ranking of replacement levels of GGBS, FA, and FCS in OPC based concretes. Hybrid combination of PCA-TOPSIS technique is found to be significant when compared to other techniques used. 30% GGBS and 50% FCS replacement in OPC based concrete was arrived at, to be optimal.

Accuracy of Phishing Websites Detection Algorithms by Using Three Ranking Techniques

  • Mohammed, Badiea Abdulkarem;Al-Mekhlafi, Zeyad Ghaleb
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.272-282
    • /
    • 2022
  • Between 2014 and 2019, the US lost more than 2.1 billion USD to phishing attacks, according to the FBI's Internet Crime Complaint Center, and COVID-19 scam complaints totaled more than 1,200. Phishing attacks reflect these awful effects. Phishing websites (PWs) detection appear in the literature. Previous methods included maintaining a centralized blacklist that is manually updated, but newly created pseudonyms cannot be detected. Several recent studies utilized supervised machine learning (SML) algorithms and schemes to manipulate the PWs detection problem. URL extraction-based algorithms and schemes. These studies demonstrate that some classification algorithms are more effective on different data sets. However, for the phishing site detection problem, no widely known classifier has been developed. This study is aimed at identifying the features and schemes of SML that work best in the face of PWs across all publicly available phishing data sets. The Scikit Learn library has eight widely used classification algorithms configured for assessment on the public phishing datasets. Eight was tested. Later, classification algorithms were used to measure accuracy on three different datasets for statistically significant differences, along with the Welch t-test. Assemblies and neural networks outclass classical algorithms in this study. On three publicly accessible phishing datasets, eight traditional SML algorithms were evaluated, and the results were calculated in terms of classification accuracy and classifier ranking as shown in tables 4 and 8. Eventually, on severely unbalanced datasets, classifiers that obtained higher than 99.0 percent classification accuracy. Finally, the results show that this could also be adapted and outperforms conventional techniques with good precision.

An Analysis on Brand Awareness of Western-style Family Restaurants (서양식 패밀리 레스토랑의 브랜드 인지도에 관한 분석)

  • Kim, Yung-Chan
    • Culinary science and hospitality research
    • /
    • v.13 no.4
    • /
    • pp.31-44
    • /
    • 2007
  • The verified results of this study on the selected study assignments are as follows: Brand awareness of the western-style family restaurants in both study assignment One and Two is examined by showing and comparing the restaurants ranked from first to third. The ranking is based on the survey response rate only. And the familiarity of family restaurants' logos is investigated by statistical techniques such as T-test Anova, Duncan's Multiple Range Test, etc. Firstly, the analytical result of study assignment One shows that the brand awareness of the family restaurants can vary depending on how often customers use the restaurants. Secondly, the analytical result of study assignment Two shows that the familiarity and the preference of the restaurants ranked from first to third are identical each other depending on customers' sex, marital status, and income. Besides, the result shows that the brand awareness shows different rankings depending on customers' age, educational background, and occupation. Thirdly, the analytical result of study assignment Three indicates that the familiarity is different depending on customers' age, educational background, occupation, and annual income.

  • PDF

Improved Feature Selection Techniques for Image Retrieval based on Metaheuristic Optimization

  • Johari, Punit Kumar;Gupta, Rajendra Kumar
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.40-48
    • /
    • 2021
  • Content-Based Image Retrieval (CBIR) system plays a vital role to retrieve the relevant images as per the user perception from the huge database is a challenging task. Images are represented is to employ a combination of low-level features as per their visual content to form a feature vector. To reduce the search time of a large database while retrieving images, a novel image retrieval technique based on feature dimensionality reduction is being proposed with the exploit of metaheuristic optimization techniques based on Genetic Algorithm (GA), Extended Binary Cuckoo Search (EBCS) and Whale Optimization Algorithm (WOA). Each image in the database is indexed using a feature vector comprising of fuzzified based color histogram descriptor for color and Median binary pattern were derived in the color space from HSI for texture feature variants respectively. Finally, results are being compared in terms of Precision, Recall, F-measure, Accuracy, and error rate with benchmark classification algorithms (Linear discriminant analysis, CatBoost, Extra Trees, Random Forest, Naive Bayes, light gradient boosting, Extreme gradient boosting, k-NN, and Ridge) to validate the efficiency of the proposed approach. Finally, a ranking of the techniques using TOPSIS has been considered choosing the best feature selection technique based on different model parameters.

Removal of Heterogeneous Candidates Using Positional Accuracy Based on Levenshtein Distance on Isolated n-best Recognition (레벤스타인 거리 기반의 위치 정확도를 이용하여 다중 음성 인식 결과에서 관련성이 적은 후보 제거)

  • Yun, Young-Sun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.8
    • /
    • pp.428-435
    • /
    • 2011
  • Many isolated word recognition systems may generate irrelevant words for recognition results because they use only acoustic information or small amount of language information. In this paper, I propose word similarity that is used for selecting (or removing) less common words from candidates by applying Levenshtein distance. Word similarity is obtained by using positional accuracy that reflects the frequency information along to character's alignment information. This paper also discusses various improving techniques of selection of disparate words. The methods include different loss values, phone accuracy based on confusion information, weights of candidates by ranking order and partial comparisons. Through experiments, I found that the proposed methods are effective for removing heterogeneous words without loss of performance.

Virtual Network Embedding through Security Risk Awareness and Optimization

  • Gong, Shuiqing;Chen, Jing;Huang, Conghui;Zhu, Qingchao;Zhao, Siyi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.2892-2913
    • /
    • 2016
  • Network virtualization promises to play a dominant role in shaping the future Internet by overcoming the Internet ossification problem. However, due to the injecting of additional virtualization layers into the network architecture, several new security risks are introduced by the network virtualization. Although traditional protection mechanisms can help in virtualized environment, they are not guaranteed to be successful and may incur high security overheads. By performing the virtual network (VN) embedding in a security-aware way, the risks exposed to both the virtual and substrate networks can be minimized, and the additional techniques adopted to enhance the security of the networks can be reduced. Unfortunately, existing embedding algorithms largely ignore the widespread security risks, making their applicability in a realistic environment rather doubtful. In this paper, we attempt to address the security risks by integrating the security factors into the VN embedding. We first abstract the security requirements and the protection mechanisms as numerical concept of security demands and security levels, and the corresponding security constraints are introduced into the VN embedding. Based on the abstraction, we develop three security-risky modes to model various levels of risky conditions in the virtualized environment, aiming at enabling a more flexible VN embedding. Then, we present a mixed integer linear programming formulation for the VN embedding problem in different security-risky modes. Moreover, we design three heuristic embedding algorithms to solve this problem, which are all based on the same proposed node-ranking approach to quantify the embedding potential of each substrate node and adopt the k-shortest path algorithm to map virtual links. Simulation results demonstrate the effectiveness and efficiency of our algorithms.