• Title/Summary/Keyword: different number of joints

Search Result 73, Processing Time 0.027 seconds

Mechanical and fracture behavior of rock mass with parallel concentrated joints with different dip angle and number based on PFC simulation

  • Zhao, Weihua;Huang, Runqiu;Yan, Ming
    • Geomechanics and Engineering
    • /
    • v.8 no.6
    • /
    • pp.757-767
    • /
    • 2015
  • Rock mass is an important engineering material. In hydropower engineering, rock mass of bank slope controlled the stability of an arch dam. However, mechanical characteristics of the rock mass are not only affected by lithology, but also joints. On the basis of field geological survey, this paper built rock mass material containing parallel concentrated joints with different dip angle, different number under different stress conditions by PFC (Particle Flow Code) numerical simulation. Next, we analyzed mechanical property and fracture features of this rock mass. The following achievements have been obtained through this research. (1) When dip angle of joints is $15^{\circ}$ and $30^{\circ}$, with the increase of joints number, peak strength of rock mass has not changed much. But when dip angle increase to $45^{\circ}$, especially increase to $60^{\circ}$ and $75^{\circ}$, peak strength of rock mass decreased obviously with the increase of joints number. (2) With the increase of confining stress, peak strengths of all rock mass have different degree of improvement, especially the rock mass with dip angle of $75^{\circ}$. (3) Under the condition of no confining stress, dip angle of joints is low and joint number is small, existence of joints has little influence on fracture mode of rock mass, but when joints number increase to 5, tensile deformation firstly happened at joints zone and further resulted in tension fracture of the whole rock mass. When dip angle of joints increases to $45^{\circ}$, fracture presented as shear along joints, and with increase of joints number, strength of rock mass is weakened caused by shear-tension fracture zone along joints. When dip angle of joints increases to $60^{\circ}$ and $75^{\circ}$, deformation and fracture model presented as tension fracture zone along concentrated joints. (4) Influence of increase of confining stress on fracture modes is to weaken joints' control function and to reduce the width of fracture zone. Furthermore, increase of confining stress translated deformation mode from tension to shear.

The Effects of Number and Location of Finger Joints on the Bending Strength of Glue Laminated Wood for Green Wood Building (핑거접합부의 수량 및 배치가 생태목조건축용 집성재의 휨강도에 미치는 영향)

  • So, Won-Tek
    • Journal of the Korea Furniture Society
    • /
    • v.18 no.1
    • /
    • pp.20-30
    • /
    • 2007
  • This experiment was carried out to investigate the effects of number and location of finger joints on the bending strength of glue-laminated lumbers. Urea resin adhesives were used in this experiment and the resin content was 70% for cold pressing. The lamina were edge-jointed and end-jointed. The specimen were composed of one or three layers. The obtained results are summarized as follows; The effects of finger joints on the decrease of bending strength of glue laminated woods were different according to the number and location of finger joints. The decrease of MOR was highest on the middle position of laminated woods. The effects of several arrangements of finger joints on the bending strength of glue laminated woods showed on Figure 7 and 8. The variance of thickness-laminating on the bending strength of glue laminated woods were larger than those of width-laminating.

  • PDF

Automatic Pose similarity Computation of Motion Capture Data Through Topological Analysis (위상분석을 통한 모션캡처 데이터의 자동 포즈 비교 방법)

  • Sung, Mankyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1199-1206
    • /
    • 2015
  • This paper introduces an algorithm for computing similarity between two poses in the motion capture data with different scale of skeleton, different number of joints and different joint names. The proposed algorithm first performs the topological analysis on the skeleton hierarchy for classifying the joints into more meaningful groups. The global joints positions of each joint group then are aggregated into a point cloud. The number of joints and their positions are automatically adjusted in this process. Once we have two point clouds, the algorithm finds an optimal 2D transform matrix that transforms one point cloud to the other as closely as possible. Then, the similarity can be obtained by summing up all distance values between two points clouds after applying the 2D transform matrix. After some experiment, we found that the proposed algorithm is able to compute the similarity between two poses regardless of their scale, joint name and the number of joints.

Mixed-Mode Stress intensity Factors for Elliptical Corner Cracks in Mechanical Joints by Weight Function Method (가중함수법에 의한 기계적 체결부에 존재하는 타원형 모서리균열의 혼합모드 응력확대계수)

  • Heo, Sung-Pil;Yang, Won-Ho;Kim, Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.703-713
    • /
    • 2001
  • Mechanical joints such as bolted or riveted joints are widely used in structural components and the reliable determination of the stress intensity factors for corner cracks in mechanical joints is needed to evaluate the safety and fatigue life. This paper analyzes the mixed-mode stress intensity factors of surface and deepest points for quarter elliptical corner cracks in mechanical joints by weight function method and the coefficients included in weight function are determined by finite element analyses for reference loadings. The extended form of the weight function method for two-dimensional mixed-mode to three-dimensional is presented and the number of terms in weight function is determined by comparing the results for the different number of terms. The amount of clearance is an important factor in evaluating the severity of elliptical corner cracks in mechanical joints and even horizontal crack normal to the applied load is under mixed-mode in the case that clearance exists.

Partially restrained beam-column weak-axis moment connections of low-rise steel structures

  • Lim, Woo-Young;Lee, Dongkeun;You, Young-Chan
    • Structural Engineering and Mechanics
    • /
    • v.76 no.5
    • /
    • pp.663-674
    • /
    • 2020
  • In this study, partially restrained beam-column moment joints in the weak-axis direction were examined using three large-scale specimens subject to cyclic loading in order to assess the seismic resistance of the joints of low-rise steel structures and to propose joint details based on the test results. The influence of different number of bolts on the moment joints was thoroughly investigated. It was found that the flexural capacity of the joints in the direction of weak axis was highly dependent on the number of high-tension bolts. In addition, even though the flexural connections subjected to cyclic loading was perfectly designed in accordance with current design codes, severe failure mode such as block shear failure could occur at beam flange. Therefore, to prevent excessive deformation at bolt holes under cyclic loading conditions, the holes in beam flange need to have larger bearing capacity than the required tensile force. In particular, if the thickness of the connecting plate is larger than that of the beam flange, the bearing capacity of the flange should be checked for structural safety.

Isotropic Configurations of Omnidirectional Mobile Robots with Three Caster Wheels

  • Kim, Sung-Bok;Lee, Jae-Young;Kim, Hyung-Gi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2066-2071
    • /
    • 2003
  • In this paper, we identify the isotropic configurations of an omnidirectional mobile robot with three caster wheels, depending on the selection of actuated joints. First, We obtain the kinematic model of a caster wheeled omnidirectional mobile robot(COMR) without matrix inversion. For a given task velocity, the instantaneous motion of each wheel is decomposed into two orthogonal instantaneous motions of the steering and the rotating joints. Second, with the characteristic length introduced, we derive the isotropy conditions of a COMR having $n({\ge}3)$ actuated joints, which are imposed on two Jacobian matrices, $A{\in}R^{n{\times}3}$ and $B{\in}R^{6{\times}6}$. Under the condition of $B{\propto}I_6$, three caster wheels should have identical structure with the length of the steering link equal to the radius of the wheel. Third, depending on the selection of actuated joints, we derive the conditions for $A^t$ $A{\propto}I_3$ and identify the isotropic configurations of a COMR. All possible actuation sets with different number of actuated joints and different combination of rotating and steering joins are considered.

  • PDF

Effect of FRP parameters in strengthening the tubular joint for offshore structures

  • Prashob, P.S.;Shashikala, A.P.;Somasundaran, T.P.
    • Ocean Systems Engineering
    • /
    • v.8 no.4
    • /
    • pp.409-426
    • /
    • 2018
  • This paper presents the strengthening of tubular joint by wrapping Carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP). In this study, total number of layers, stacking sequence and length of wrapping are the different parameters involved when fiber reinforced polymers (FRP) composites are used for strengthening. For this, parameters where varied and results were compared with the reference joint. The best stacking sequence was identified which has the highest value in ultimate load with lesser deflections. For determining the best stacking sequence, numerical investigation was performed on CFRP composites; length of wrapping and number of layers were fixed. Later, the studies were focused on CFRP and GFRP strengthened joint by varying the total number of layers and length of wrapping. An attempt was done to propose a parametric equation from multiple regression analysis, which can be used for CFRP strengthened joints. Hashin failure criteria was used to check the failure of composites. Results revealed that FRP was having a greater influence in the load bearing capacity of joints, and in reducing the deflections and stresses of joint under axial compressive loads. It was also seen that, CFRP was far better than GFRP in reducing the stresses and deflection.

A review of experimental and numerical investigations about crack propagation

  • Sarfarazi, Vahab;Haeri, Hadi
    • Computers and Concrete
    • /
    • v.18 no.2
    • /
    • pp.235-266
    • /
    • 2016
  • A rock mass containing non-persistent joints can only fail if the joints propagate and coalesce through an intact rock bridge. Shear strength of rock mass containing non-persistent joints is highly affected by the both, mechanical behavior and geometrical configuration of non-persistent joints located in a rock mass. Existence of rock joints and rock bridges are the most important factors complicating mechanical responses of a rock mass to stress loading. The joint-bridge interaction and bridge failure dominates mechanical behavior of jointed rock masses and the stability of rock excavations. The purpose of this review paper is to present techniques, progresses and the likely future development directions in experimental and numerical modelling of a non-persistent joint failure behaviour. Such investigation is essential to study the fundamental failures occurring in a rock bridge, for assessing anticipated and actual performances of the structures built on or in rock masses. This paper is divided into two sections. In the first part, experimental investigations have been represented followed by a summarized numerical modelling. Experimental results showed failure mechanism of a rock bridge under different loading conditions. Also effects of the number of non-persistent joints, angle between joint and a rock bridge, lengths of the rock bridge and the joint were investigated on the rock bridge failure behaviour. Numerical simulation results are used to validate experimental outputs.

Numerical simulation and experimental investigation of the shear mechanical behaviors of non-persistent joint in new shear test condition

  • Wang, Dandan;Zhang, Guang;Sarfarazi, Vahab;Haeri, Hadi;Naderi, A.A.
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.239-255
    • /
    • 2020
  • Experimental and discrete element method were used to investigate the effects of joint number and its angularities on the shear behaviour of joint's bridge area. A new shear test condition was used to model the gypsum cracks under shear loading. Gypsum samples with dimension of 120 mm×100 mm×50 mm were prepared. the length of joints was 2cm. in experimental tests, the joint number is 1, 2 and 3 and its angularities change from 0° to 90° with increment of 45°. Assuming a plane strain condition, special rectangular models are prepared with dimension of 120 mm×100 mm. similar to joints configuration in experimental test, 9 models with different joint number and joint angularities were prepared. This testing show that the failure process is mostly governed by the joint number and joint angularities. The shear strengths of the specimens are related to the fracture pattern and failure mechanism of the discontinuities. The shear behaviour of discontinuities is related to the number of induced tensile cracks which are increased by increasing the rock bridge length. The strength of samples decreases by increasing the joint number and joint angularities. Failure pattern and failure strength are similar in both of the experimental test and numerical simulation.

Study of compressive behavior of triple joints using experimental test and numerical simulation

  • Sarfarazi, Vahab;Wang, Xiao;Nesari, Mojtaba;Ghalam, Erfan Zarrin
    • Smart Structures and Systems
    • /
    • v.30 no.1
    • /
    • pp.49-62
    • /
    • 2022
  • Experimental and discrete element methods were used to investigate the effects of triple joints lengths and triple joint angle on the failure behavior of rock mass under uniaxial compressive test. Concrete samples with dimension of 20 cm × 20 cm × 5 cm were prepared. Within the specimen, three imbedded joint were provided. The joint lengths were 2 cm, 4cm and 6 cm. In constant joint lengths, the angle between middle joint and other joints were 30°, 60°, 90°, 120° and 150°. Totally 15 different models were tested under compression test. The axial load rate on the model was 0.05 mm/min. Concurrent with experimental tests, the models containing triple joints, length and joint angle are similar to the experiments, were numerical by Particle flow code in two dimensions (PFC2D). Loading rate in numerical modelling was 0.05 mm/min. Tensile strength of material was 1 MPa. The results show that the failure behaviors of rock samples containing triple joints were governed by both of the angle and the length of the triple joints. The uniaxial compressive strengths (UCS) of the specimens were related to the fracture pattern and failure mechanism of the discontinuities. Furthermore, it was shown that the compressive behavior of discontinuities is related to the number of the induced tensile cracks which are increased by decreasing the joint length. Along with the damage failure of the samples, the acoustic emission (AE) activities are excited. There were only a few AE hits in the initial stage of loading, then AE hits rapidly grow before the applied stress reached its peak. In addition, every stress drop was accompanied by a large number of AE hits. Finally, the failure pattern and failure strength are similar in both methods i.e., the experimental testing and the numerical simulation methods.