• Title/Summary/Keyword: different methods

Search Result 24,019, Processing Time 0.05 seconds

Assessment of Nitrogen Fate in the Soil by Different Application Methods of Digestate (혐기성 소화액의 농지환원에 따른 질소 거동)

  • Nkombo, Laure Lysette Chimi;Hong, Seong Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.3
    • /
    • pp.35-45
    • /
    • 2021
  • Digestate or slurry produced from anaerobic digestion is mostly applied to crop lands for its disposal and recovering nutrients. However, minimizing nitrogen losses following field application of the digestate is important for maximizing the plant's nitrogen uptake and reducing environmental concerns. This study was conducted to assess the effects of three different biogas digestate application techniques (sawdust mixed with digestate (SSD), the hole application method (HA), and digestate injected in the soil (SD)) on nitrate leaching potential in the soil. A pot laboratory experiment was conducted at room temperature of 25 ± 2 ℃ for 107 days. The experimental results showed that sawdust application method turned out to be appropriate for quick immobilization of surplus N in the form of microbial biomass N, reflecting its lower total nitrogen and NH4-N contents and low pH. The NH4-N and total nitrogen fate in the soil fertilized with manure showed no statistically significant (p > 0.05) differences between the different methods applied during the incubation time under room temperature. In contrast, NO3-N concentration indicates significant reduction in sawdust treatment (p < 0.05) compared to the control and other application methods. However, the soil sawdust mixed with digestate was more effective than the other methods, because of the cumulative labile carbon contents of the amendment, which implies soil net N immobilization.

Fault Diagnosis Method based on Feature Residual Values for Industrial Rotor Machines

  • Kim, Donghwan;Kim, Younhwan;Jung, Joon-Ha;Sohn, Seokman
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.2
    • /
    • pp.89-99
    • /
    • 2018
  • Downtime and malfunction of industrial rotor machines represents a crucial cost burden and productivity loss. Fault diagnosis of this equipment has recently been carried out to detect their fault(s) and cause(s) by using fault classification methods. However, these methods are of limited use in detecting rotor faults because of their hypersensitivity to unexpected and different equipment conditions individually. These limitations tend to affect the accuracy of fault classification since fault-related features calculated from vibration signal are moved to other regions or changed. To improve the limited diagnosis accuracy of existing methods, we propose a new approach for fault diagnosis of rotor machines based on the model generated by supervised learning. Our work is based on feature residual values from vibration signals as fault indices. Our diagnostic model is a robust and flexible process that, once learned from historical data only one time, allows it to apply to different target systems without optimization of algorithms. The performance of the proposed method was evaluated by comparing its results with conventional methods for fault diagnosis of rotor machines. The experimental results show that the proposed method can be used to achieve better fault diagnosis, even when applied to systems with different normal-state signals, scales, and structures, without tuning or the use of a complementary algorithm. The effectiveness of the method was assessed by simulation using various rotor machine models.

Review on the Wear behavior of the Hot Stamping Process with Respect to Friction Testing Methods (마찰 방법에 따른 핫스탬핑 마모 거동의 연구 동향)

  • Ji, Min-Ki;Jun, Tea-Sung
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.350-358
    • /
    • 2020
  • Hot stamping is an effective and suitable process widely used in automotive applications, though critical issues such as the transfer of the coating materials and build-up of these materials on tool surfaces have been encountered. Past researches figured out the resultant wear phenomenon using pin-on-disc and drawing (for example, strip drawing and deep drawing) methods to mimic the process and analyzed the wear behavior with respect to the influencing factors such as surface coating, load, and roughness. Although the pin-on-disc is a conventional and widely-used method, it presented a methodological limitation when simulating the hot stamping process by forming a new blank each time, and hence, a drawing-based friction method has been proposed and developed. Each drawing method applies loads in a different way, resulting in a different wear behavior. Notably, the deep drawing process is most similar to the hot stamping process compared to other drawing methods. In this paper we present a review of the friction testing methods mimicking the hot stamping process and the associated wear behavior. This can be helpful in presenting a step-by-step approach and different perspectives on the wear behavior in the hot stamping process.

Uncertainty Evaluation of Baseflow Separation Filter methods: A Case Study of the Urmia Lake Basin in Iran

  • Nezhad, Somayeh Moghimi;Jun, Changhyun;Parisouj, Peiman;Narimani, Roya
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.135-135
    • /
    • 2022
  • In this study, we evaluated uncertainties in baseflow separation filter methods focusing on changes in recession constant (𝛼) values, which include Lynie & Holick (LH) algorithm, Chapman algorithm, Eckhardt filter, and EWMA filter. Here, we analyzed daily streamflow data at 14 stations in the Urmia Lake basin, Iran, from 2015 to 2019. The 𝛼 values were computed using three different approaches from calculating the slope of a recession curve by averaging the flow over all seasons, a correlation method, and a mean value of the ratio of Qt+1 to Qt. In addition to the 𝛼 values, the BFImax (maximum value of the baseflow index (BFI)) was determined for the Eckhardt filter through the backward filter method. As results, it indicates that the estimated baseflow is dependent upon the selection of filter methods, their parameters, and catchment characteristics at different stations. In particular, the EWMA filter showed the least changes in estimating the baseflow value by changing the 𝛼 value, and the Eckhardt filter and LH algorithm showed the highest sensitivity to this parameter at different stations.

  • PDF

Music summarization using visual information of music and clustering method

  • Kim, Sang-Ho;Ji, Mi-Kyong;Kim, Hoi-Rin
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.400-405
    • /
    • 2006
  • In this paper, we present effective methods for music summarization which summarize music automatically. It could be used for sample music of on-line digital music provider or some music retrieval technology. When summarizing music, we use different two methods according to music length. First method is for finding sabi or chorus part of music which can be regarded as the most important part of music and the second method is for extracting several parts which are in different structure or have different mood in the music. Our proposed music summarization system is better than conventional system when structure of target music is explicit. The proposed method could generate just one important segment of music or several segments which have different mood in the music. Thus, this scheme will be effective for summarizing music in several applications such as online music streaming service and sample music for Tcommerce.

  • PDF

Using the Monte Carlo method to solve the half-space and slab albedo problems with Inönü and Anlı-Güngör strongly anisotropic scattering functions

  • Bahram R. Maleki
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.324-329
    • /
    • 2023
  • Different types of deterministic solution methods were used to solve neutron transport equations corresponding to half-space and slab albedo problems. In these types of solution methods, in addition to the error of the numerical solutions, the obtained results contain truncation and discretization errors. In the present work, a non-analog Monte Carlo method is provided to simulate the half-space and slab albedo problems with Inönü and Anlı-Güngör strongly anisotropic scattering functions. For each scattering function, the sampling method of the direction of the scattered neutrons is presented. The effects of different beams with different angular dependencies and the effects of different scattering parameters on the reflection probability are investigated using the developed Monte Carlo method. The validity of the Monte Carlo method is also confirmed through the comparison with the published data.

Review of the Determination Methods for Metal Compounds with Different Occupational Exposure Limits Depending on Solubility (용해도에 따라 노출기준이 다른 금속화합물의 정량방법 고찰)

  • Park, Seung-Hyun;Ro, Jiwon;Jang, Miyeon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.2
    • /
    • pp.87-98
    • /
    • 2020
  • Objective: The purpose of this study was to propose a sequential procedure for the simultaneous analysis of soluble and insoluble metal compounds. Methods: Methods for sampling and analyzing metal compounds such as ISO standards, NIOSH methods, HSE methods, and OSHA methods were reviewed. Results: Some metals have different OELs depending on the solubility of the compound. Therefore, we should take into account these characteristics and perform an exposure assessment. Soluble metal compounds are first extracted from the filter, and then the filter is digested by acids to analyze residual insoluble components. The extraction of soluble compounds can be completed by agitation for about 60 minutes with a leach solution (water) in a water bath at 37℃. For the analysis of insoluble compounds, the sample filter and the filtration filter remaining after the extraction of the soluble compounds are analyzed. This allows simultaneous determination of soluble and insoluble metal compounds. For hexavalent chromium compounds, soluble hexavalent chromium can first be extracted from the filter by using sulfate buffer. The insoluble hexavalent chromium remaining in the filter can then be extracted using carbonate buffer. Conclusion: Workers are often exposed to many hazardous substances with different exposure limits at industrial sites. The OELs for compounds of the same metal can be set differently depending on solubility. This study can help evaluate a worker's exposure to metal compounds by suggesting methods for the simultaneous determination of soluble and insoluble metal compounds.

Comparative analysis of damping ratio determination methods based on dynamic triaxial tests

  • Song Dongsong;Liu Hongshuai
    • Earthquakes and Structures
    • /
    • v.25 no.4
    • /
    • pp.249-267
    • /
    • 2023
  • Various methods for determining the damping ratio have been proposed by scholars both domestically and abroad. However, no comparative analysis of different determination methods has been seen yet. In this study, typical sand (Fujian standard sand) and cohesive soils were selected as experimental objects, and undrained strain-controlled dynamic triaxial tests were conducted. The differences between existing damping ratio determination methods were theoretically compared and analyzed. The results showed that the hysteresis curve of cohesive soils had better symmetry and more closely conformed to the definition of equivalent linear viscoelasticity. For non-cohesive soils, the differences in damping ratio determined by six methods were significant. The differences decreased with increasing confining pressure and relative density, but increased gradually with increasing shear strain, especially at high shear strains, where the maximum relative error reached 200%. For cohesive soils, the differences in damping ratio determined by six methods were relatively small, with a maximum relative error of about 50%. Moreover, they were less affected by effective confining pressure and had the same changing trend under different effective confining pressures. The damping ratio determination method has a large effect on the seismic response of soils distributed by non-cohesive soils, with a maximum relative error of about 15% for the PGA and up to about 30% for the Sa. However, for soil layers distributed by cohesive soils, the damping ratio determination method has less influence on the seismic response. Therefore, it is necessary to adopt a unified damping ratio determination method for non-cohesive soils, which can effectively avoid artificial errors caused by different determination methods.

Drying methods for municipal solid waste quality improvement in the developed and developing countries: A review

  • Tun, Maw Maw;Juchelkova, Dagmar
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.529-542
    • /
    • 2019
  • Nowadays, drying methods for municipal solid waste quality improvement have been adopted in the developed and developing countries to valorize wastes for a renewable energy source, reduce dependency on fossil fuel and keep safer disposal at landfills. Among them, biodrying, biostabilization, thermal drying and solar drying are the most common. Drying of municipal solid waste could offer several environmental and economic benefits. Therefore, this review highlighted the drying methods for municipal solid waste quality improvement around the world and compared them based on the reduction of moisture, weight and volume of municipal solid wastes against drying temperature and time by using statistical analysis. It was observed that the drying temperature of different drying methods accounted for 115 ± 40℃ for thermal drying, 59 ± 37℃ for solar drying, 55 ± 15℃ for biodrying and 58 ± 11℃ for biostabilization. Among the drying methods, thermal drying provided the shortest drying time. The moisture reduction, weight reduction, volume reduction and heating value increase of municipal solid waste could vary with drying temperature and time. Finally, the benefits and drawbacks of different drying methods were specified, and recommendations were made for the future efficient drying.

Three states of stromal cells-solid, liquid, and aerosol-and innovative delivery methods not previously reported

  • Copcu, Hasim Eray
    • Archives of Plastic Surgery
    • /
    • v.48 no.5
    • /
    • pp.549-552
    • /
    • 2021
  • Clinical applications of stromal cells obtained mechanically from adipose tissue are quite popular methods. However, generally accepted protocols still do not exist. In this study, three new delivery methods using different protocols are presented as innovative methods in accordance with an approach called "Indication-based protocols." In mechanical methods, before cutting the fat tissue with ultra-sharp blades, which we define as "Adinizing," mixing it with different liquids such as saline or plasma provides the stromal cells in liquid form with high number and viability as a final product. At the same time, since stromal cells and extracellular matrix are preserved by mechanical methods, it was deemed appropriate to use the term total stromal cells (TOST) instead of stromal vascular fraction for this final product, unlike the product obtained with the enzyme. TOST can be combined with plasma and used for dermal filling in "solid" form. In addition to this filling effect, it will also cause a change in the tissue regeneratively. Finally, the stromal cells obtained from liquid can be applied clinically in aerosol form with the help of nebulizer. We believe that three innovative delivery methods can be used successfully in the treatment of many clinical situations in the future.