• Title/Summary/Keyword: different loading

Search Result 3,091, Processing Time 0.024 seconds

Cyclic behaviour of beam-to-column welded connections

  • Mele, Elena;Calado, Luis;De Luca, Antonello
    • Steel and Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.269-282
    • /
    • 2001
  • In this paper the results of an experimental program devoted to the assessment of the cyclic behaviour of full scale, European type, beam-column subassemblages with welded connections are presented. Six tests (five cyclic and one monotonic) have been carried out on three different series of specimens, encompassing a total of eighteen tests. The three specimen series have been designed with the aim of defining the effect of the column size on the connection behaviour, under different applied loading histories. The tests have evidenced the effect of the column size and panel zone design and of the applied loading history on the cyclic behaviour and failure modes of the connections.

A probabilistic analysis of Miner's law for different loading conditions

  • Blason, Sergio;Correia, Jose A.F.O.;Jesus, Abilio M.P. De;Calcada, Rui A.B.;Fernandez-Canteli, Alfonso
    • Structural Engineering and Mechanics
    • /
    • v.60 no.1
    • /
    • pp.71-90
    • /
    • 2016
  • In this paper, the normalized variable V=(log N-B)(log ${\Delta}{\sigma}-C$-C), as derived from the probabilistic S-N field of Castillo and Canteli, is taken as a reference for calculation of damage accumulation and probability of failure using the Miner number in scenarios of variable amplitude loading. Alternative damage measures, such as the classical Miner and logarithmic Miner, are also considered for comparison between theoretical lifetime prediction and experimental data. The suitability of this approach is confirmed for it provides safe lifetime prediction when applied to fatigue data obtained for riveted joints made of a puddle iron original from the Fao bridge, as well as for data from experimental programs published elsewhere carried out for different materials (aluminium and concrete specimens) under distinct variable loading histories.

Analysis of the wind loading of square cylinders using covariance proper transformation

  • de Grenet, Enrico T.;Ricciardelli, Francesco
    • Wind and Structures
    • /
    • v.7 no.2
    • /
    • pp.71-88
    • /
    • 2004
  • In this paper the capacity of Covariance Proper Transformation (CPT) analyses to provide information about the wind loading mechanisms of bluff bodies is investigated through the application to square cylinders. CPT is applied to the fluctuating pressure distributions on a single cylinder, as well as on a pair of cylinders in the tandem and side by side arrangements, with different separations. Both smooth and turbulent flow conditions are considered. First, through the analysis of the contributions of each CPT mode to the total fluctuating aerodynamic forces, a correspondence between modes and aerodynamic components is sought, which is then verified through examination of the mode shapes. When a correspondence between modes and aerodynamic components is found, an attempt is made to separate the different frequency contributions to the aerodynamic forces, provided by each mode. From the analyses it emerges that (a) in most cases each mode is associated to one single force component, that (b) retaining a limited number of modes allows reproducing the aerodynamic forces with a rather good accuracy, and that (c) each mode is mainly associated with one frequency of excitation.

Using Lamb Waves to Monitor Moisture Absorption in Thermally Fatigued Composite Laminates

  • Lee, Jaesun;Cho, Younho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.3
    • /
    • pp.175-180
    • /
    • 2016
  • Nondestructive evaluation for material health monitoring is important in aerospace industries. Composite laminates are exposed to heat cyclic loading and humid environment depending on flight conditions. Cyclic heat loading and moisture absorption may lead to material degradation such as matrix breaking, debonding, and delamination. In this paper, the moisture absorption ratio was investigated by measuring the Lamb wave velocity. The composite laminates were manufactured and subjected to different thermal aging cycles and moisture absorption. For various conditions of these cycles, not only changes in weight and also ultrasonic wave velocity were measured, and the Lamb wave velocity at various levels of moisture on a carbon-epoxy plate was investigated. Results from the experiment show a linear correlation between moisture absorption ratio and Lamb wave velocity at different thermal fatigue stages. The presented method can be applied as an alternative solution in the online monitoring of composite laminate moisture levels in commercial flights.

Effect of direct member loading on space truss behaviour

  • El-Sheikh, Ahmed
    • Structural Engineering and Mechanics
    • /
    • v.10 no.1
    • /
    • pp.1-15
    • /
    • 2000
  • It is inevitable that every space truss structure would be under some form of direct member loading. At least the structure self weight certainly affects the members directly, and in structures involving top concrete slabs or cladding, their weight is also likely to apply some lateral pressure on the members. In spite of that, direct member loading is usually ignored in space truss designs and assumed to lead only to a negligible effect on truss performance. This study is intended to explore this point and identify the actual effects that can arise from direct member loading, and eventually provide an answer to the question of whether the current design practice is satisfactory or certain modifications would be needed. After presenting two analytical techniques to allow the study of space trusses with laterally loaded members, the paper describes a wide parametric study involving practical-size space trusses with different configurations, aspect ratios, boundary conditions and number of chord panels.

DURABILITY TESTING OF MARINE REINFORCED CONCRETE UNDER FATIGUE LOADING, PART I AND II (피로하중을 받는 해양 콘크리트의 내구성 연구)

  • ;D. V. Reddy
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.348-353
    • /
    • 1996
  • This study addresses the evaluation of the durability of reinforced concrete marine structures subjected to fatigue loading. The laboratory investigation was carried out on full and half size reinforced concrete specimens with three different water cement ratios (0.3, 0.4, and 0.56), static and fatigue loading conditions, and epoxy-coated and regular black steel reinforcements. The marine tidal zone was simulated by alternate filling and draining of the tank (wet and dry cycled), and a galvanostatic corrosion technique to accelerate corrosion of reinforcement was used. Half-cell potentials and changes of crack width were measured periodically during the exposure and followed by ultimate strength testing. The significant findings include adverse effect of fatigue loading, existence of an explicit size effect, poor performance of epoxy coated steel, and negative effect of increasing water/cement ratio.

  • PDF

On Diagonal Loading for Robust Adaptive Beamforming Based on Worst-Case Performance Optimization

  • Lin, Jing-Ran;Peng, Qi-Cong;Shao, Huai-Zong
    • ETRI Journal
    • /
    • v.29 no.1
    • /
    • pp.50-58
    • /
    • 2007
  • Robust adaptive beamforming based on worst-case performance optimization is investigated in this paper. It improves robustness against steering vector mismatches by the approach of diagonal loading. A closed-form solution to optimal loading is derived after some approximations. Besides reducing the computational complexity, it shows how different factors affect the optimal loading. Based on this solution, a performance analysis of the beamformer is carried out. As a consequence, approximated closed-form expressions of the source-of-interest power estimation and the output signalto-interference-plus-noise ratio are presented in order to predict its performance. Numerical examples show that the proposed closed-form expressions are very close to their actual values.

  • PDF

Computational modelling for description of rubber-like materials with permanent deformation under cyclic loading

  • Guo, Z.Q.;Sluys, L.J.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.3
    • /
    • pp.317-328
    • /
    • 2008
  • When carbon-filled rubber specimens are subjected to cyclic loading, they do not return to their initial state after loading and subsequent unloading, but exhibit a residual strain or permanent deformation. We propose a specific form of the pseudo-elastic energy function to represent cyclic loading for incompressible, isotropic materials with stress softening and residual strain. The essence of the pseudo-elasticity theory is that material behaviour in the primary loading path is described by a common elastic strain energy function, and in unloading, reloading or secondary unloading paths by a different strain energy function. The switch between strain energy functions is controlled by the incorporation of a damage variable into the strain energy function. An extra term is added to describe the permanent deformation. The finite element implementation of the proposed model is presented in this paper. All parameters in the proposed model and elastic law can be easily estimated based on experimental data. The numerical analyses show that the results are in good agreement with experimental data.

Study of High Precision Mechanism For Loading/Unloading of Material (소재의 정밀 Loading/unloading 기술 개발)

  • Choi Hyeun-Seok;Tak Tae-Yul;Han Chang-Soo;Lee Nak-Kyu;Choi Tae-Hoon;Lee Hye-Jin
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.419-423
    • /
    • 2005
  • In microfactory, loading/unloading mechanism supply the row material to processing machines for manufacturing process such as pressing, cutting, plastic deformation. This mechanism for rnicrofactory is designed as modularity robot. Microfactory system have to be flexible structure for variety product item. For system flexibility, applied mechanisms are developed as moduality. Robot moduality needs the specific characteristics which are different from one of macro, typical robot system. In this paper, we discussed about the modularity robot. and proposed the loading/unloading mechanism for working in microfactory system.

  • PDF

A Real-Time Loading Strategy of Batch Processing Machines for Average Tardiness Minimization (평균납기지연 최소화를 위한 배치생산공정의 실시간 로딩전략)

  • Koo, Pyung-Hoi
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.2
    • /
    • pp.215-222
    • /
    • 2014
  • This paper provides a real-time loading strategy for batch processing machines in which a number of jobs are simultaneously processed as a batch. The batch processing machines can be seen in both manufacturing industries (e.g., semiconductor, automobile and metal working) and service industries (transportation vehicles, mail shipment and theme park). This paper focuses on batch processing machines in semiconductor manufacturing. We present a look-ahead loading strategy for tardiness minimization where future arrivals and due dates are taken into consideration. Simulation tests are performed on the presented strategy and some existing loading heuristics under various production settings with different traffic intensities and forecasting errors. Experimental results show that our strategy provides the performance of good quality.