• Title/Summary/Keyword: difference polynomial

Search Result 146, Processing Time 0.022 seconds

Accuracy Improvement of KOMPSAT-3 DEM Using Previous DEMs without Ground Control Points

  • Lee, Hyoseong;Park, Byung-Wook;Ahn, Kiweon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.4
    • /
    • pp.241-248
    • /
    • 2017
  • GCPs (Ground Control Points) are needed to correct the DEM (Digital Elevation Model) produced from high-resolution satellite images and the RPC (Rational Polynomial Coefficient). It is difficult to acquire the GCPs through field surveys such as GPS surveys and to read the image coordinates corresponding to the GCPs. In addition, GCPs cannot cover the entire image of the test site, and the RPC correction results may be influenced by the arrangement and distribution of the GCPs in the image. Therefore, a new method for the RPC correction is needed. In this study, an LHD (Least-squares Height Difference) DEM matching method was applied using previous DEMs: SRTM DEM, digital map DEM, and corrected IKONOS DEM. This was carried out to correct the DEM produced from KOMPSAT-3 satellite images and the provided RPC without GCPs. The IKONOS DEM had the highest accuracy, and the height accuracy was about ${\pm}3m$ RMSE in a mountainous area and about ${\pm}2m$ RMSE in an area with only low heights.

Color Image Acquired by the Multispectral Near-IR LED Lights (다중 파장 근적외선 LED조명에 의한 컬러영상 획득)

  • Kim, Ari;Kim, Hong-Suk;Park, Youngsik;Park, Seung-Ok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.2
    • /
    • pp.1-10
    • /
    • 2016
  • A system which provides multispectral near-IR and visible gray images of objects is constructed and an algorithm is derived to acquire a natural color image of objects from the gray images. A color image of 24 color patches is obtained by recovering their CIE (International Commission on Illumination) LAB color coordinates $L^*$, $a^*$, $b^*$ from their gray images using the algorithm based on polynomial regression. The system is composed of a custom-designed LED illuminator emitting multispectral near-IR illuminations, fluorescent lamps and a monochrome digital camera. Color reproducibility of the algorithm is estimated in CIELAB color difference ${\Delta}E^*_{ab}$. And as a result, if yellow and magenta color patches with around 10 ${\Delta}E^*_{ab}$ are disregarded, the average ${\Delta}E^*_{ab}$ is 2.9, and this value is within the acceptability tolerance for quality evaluation for digital color complex image.

On the Spatial Registration Considering Image Exposure Compensation (영상의 노출 보정을 고려한 공간 정합 알고리듬 연구)

  • Kim, Dong-Sik;Lee, Ki-Ryung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.2 s.314
    • /
    • pp.93-101
    • /
    • 2007
  • To jointly optimize the spatial registration and the exposure compensation, an iterative registration algorithm, the Lucas-Kanade algorithm, is combined with an exposure compensation algorithm, which is based on the histogram transformation function. Based on a simple regression model, a nonparametric estimator, the empirical conditional mean, and its polynomial fitting are used as histogram transformation functions for the exposure compensation. Since the proposed algorithm is composed of separable optimization phases, the proposed algorithm is more advantageous than the joint approaches of Mann and Candocia in the aspect of implementation flexibility. The proposed algorithm performs a better registration for real images than the case of registration that does not consider the exposure difference.

Change of stochastic properties of MEMS structure in terms of dimensional variations using function approximation moment method (함수 근사 모멘트 기법을 활용한 치수 분포에 따른 MEMS 구조물의 통계적 특성치 변화에 관한 연구)

  • Huh J.S.;Kwak B.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.602-606
    • /
    • 2005
  • A systematic procedure of probability analysis for general distributions is developed based on the first four moments estimated from polynomial interpolation of the system response function and the Pearson system. The function approximation is based on a specially selected experimental region for accuracy and the number of function evaluations is taken equal to that of the unknown coefficient for efficiency. For this purpose, three error-minimizing conditions are proposed and corresponding canonical experimental regions are formed for popular probability. This approach is applied to study the stochastic properties of the performance functions of a MEMS structure, which has quite large fabrication errors compared to other structures. Especially, the vibratory micro-gyroscope is studied using the statistical moments and probability density function (PDF) of the performance function to be the difference between resonant frequencies corresponding to sensing and driving mode. The results show that it is very sensitive to the fabrication errors and that the types of PDF of each variable also affect the stochastic properties of the performance function although they have same the mean and variance.

  • PDF

A Development of a LED Stand Using Illuminance Sensor for Efficient Energy Saving (효율적인 에너지 절감을 위한 센서 LED 스탠드 개발)

  • Chun, Sung-Yong;Shin, Ji-Yea;Park, Shin-Won;Yi, Hwa-Cho;Lee, Chan-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.9
    • /
    • pp.1-7
    • /
    • 2012
  • In this paper, we present a new lighting control method considering ambient light in addition to the required lighting illumination for efficient energy saving of a LED stand. We estimate accurate environmental illuminance using a cheap illuminance sensor by modeling measured- and actual-illuminance using quadratic polynomial approximation. The relation between PWM(Pulse Width Modulation) duty ratio and illuminance intensity is modeled by a linear model. Illumination of the LED stand is controlled by estimating the difference of required illumination and the estimated ambient illumination. The developed LED stand has reduced electric energy consumption compared with a conventional manually controlled LED stand with the same lighting source. In addition, human subject evaluation shows that the LED stand, which is applied the proposed method, is more satisfactory than conventional ones since the proposed automatic controlled illumination produce more accurately required lighting and it is convenient.

Progressive failure of symmetrically laminated plates under uni-axial compression

  • Singh, S.B.;Kumar, Ashwini;Iyengar, N.G.R.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.4
    • /
    • pp.433-450
    • /
    • 1997
  • The objective of this work is to predict the failure loads, associated maximum transverse displacements, locations and the modes of failure, including the onset of delamination, of thin, flat, square symmetric laminates under the action of uni-axial compression. Two progressive failure analyses, one using Hashin criterion and the other using Tensor polynomial criteria, are used in conjunction with the finite element method. First order shear deformation theory and geometric nonlinearity in the von Karman sense have been employed. Five different types of lay-up sequence are considered for laminates with all edges simply supported. In addition, two boundary conditions, one with all edges fixed and other with mixed boundary conditions for $(+45/-45/0/90)_{2s}$ quasi-isotropic laminate have also been considered to study the effect of boundary restraints on the failure loads and the corresponding modes of failure. A comparison of linear and nonlinear results is also made for $({\pm}45/0/90)_{2s}$ quasi-isotropic laminate. It is observed that the maximum difference between the failure loads predicted by various criteria depend strongly on the laminate lay-ups and the flexural boundary restraints. Laminates with clamped edges are found to be more susceptible to failure due to the transverse shear and delamination, while those with the simply supported edges undergo total collapse at a load slightly higher than the fiber failure load.

A Study on Trend Sharing in Segmental-feature HMM (분절 특징 은닉 마코프 모델에서의 경향 공유에 관한 연구)

  • 윤영선
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.7
    • /
    • pp.641-647
    • /
    • 2002
  • In this paper, we propose the reduction method of the number of parameters in the segmental-feature HMM using trend quantization method. The proposed method shares the trend information of the polynomial trajectories by quantization. The trajectory is obtained by the sequence of feature vectors of speech signals and can be divided by trend and location information. The trend indicates the variation of consequent frame features, while the location points to the positional difference of the trajectories. Since the trend occupies the large portion of SFHMM, if the trend is shared, the number of parameters maybe decreases. To exploit the proposed system the experiments are performed on TIMIT corpus. The experimental results show that the performance of the proposed system is roughly similar to that of previous system. Therefore, the proposed system can be considered one of parameter reduction method.

Prediction of initiation time of corrosion in RC using meshless methods

  • Yao, Ling;Zhang, Lingling;Zhang, Ling;Li, Xiaolu
    • Computers and Concrete
    • /
    • v.16 no.5
    • /
    • pp.669-682
    • /
    • 2015
  • Degradation of reinforced concrete (RC) structures due to chloride penetration followed by reinforcement corrosion has been a serious problem in civil engineering for many years. The numerical simulation methods at present are mainly finite element method (FEM) and finite difference method (FDM), which are based on mesh. Mesh generation in engineering takes a long time. In the present article, the numerical solution of chloride transport in concrete is analyzed using radial point interpolation method (RPIM) and element-free Galerkin (EFG). They are all meshless methods. RPIM utilizes radial polynomial basis, whereas EFG uses the moving least-square approximation. A Galerkin weak form on global is used to attain the discrete equation, and four different numerical examples are presented. MQ function and appropriate parameters have been proposed in RPIM. Numerical simulation results are compared with those obtained from the finite element method (FEM) and analytical solutions. Two case of chloride transport in full saturated and unsaturated concrete are analyzed to test the practical applicability and performance of the RPIM and EFG. A good agreement is obtained among RPIM, EFG, and the experimental data. It indicates that RPIM and EFG are reliable meshless methods for prediction of chloride concentration in concrete structures.

Progressive failure of symmetric laminates under in-plane shear : I-positive shear

  • Singh, S.B.;Kumar, Ashwini;Iyengar, N.G.R.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.2
    • /
    • pp.143-159
    • /
    • 1998
  • The objective of this present work is to estimate the failure loads, associated maximum transverse displacements, locations and the modes of failure, including the onset of delamination, of thin, square symmetric laminates under the action in-plane positive (+ve) shear load. Two progressive failure analyses, one using the Hashin criterion and the other using a Tensor polynomial criterion, are used in conjunction with finite element method. First order shear deformation theory along with geometric non-linearity in the von Karman sense have been employed. Variation of failure loads and failure characteristics with five type of lay-ups and three types of boundary conditions has been investigated in detail. It is observed that the maximum difference between failure loads predieted by various criteria depends strongly on the laminate lay-up and the flexural boundary restraint. Laminates with clamped edges are found to be more susceptible to failure due to transverse shear (ensuing from the out of plane bending) and delamination, while those with simply supported edges undergo total collapse at a load slightly higher than the fiber failure load. The investigation on negative (-ve) in-plane shear load is in progress and will be communicated as part-II of the present work.

Structural damage and force identification under moving load

  • Zhu, Hongping;Mao, Ling;Weng, Shun;Xia, Yong
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.261-276
    • /
    • 2015
  • Structural damage and moving load identification are the two aspects of structural system identification. However, they universally coexist in the damaged structures subject to unknown moving load. This paper proposed a dynamic response sensitivity-based model updating method to simultaneously identify the structural damage and moving force. The moving force which is equivalent as the nodal force of the structure can be expressed as a series of orthogonal polynomial. Based on the system Markov parameters by the state space method, the dynamic response and the dynamic response derivatives with respect to the force parameters and elemental variations are analytically derived. Afterwards, the damage and force parameters are obtained by minimizing the difference between measured and analytical response in the sensitivity-based updating procedure. A numerical example for a simply supported beam under the moving load is employed to verify the accuracy of the proposed method.