• 제목/요약/키워드: difference of current density

검색결과 259건 처리시간 0.026초

CIGS 태양전지의 소수캐리어 확산 거리에 대한 새로운 측정 방안 연구 (Rapid and Accurate Measurement of Diffusion Length of Minority Carriers of CIGS Solar Cells)

  • 이돈환;김영수;모찬빈;남정규;이동호;박성찬;김병준;김동섭
    • Current Photovoltaic Research
    • /
    • 제2권2호
    • /
    • pp.59-62
    • /
    • 2014
  • Minority carrier diffusion length is one of the most important parameters of solar cells, especially for short circuit current density (Jsc). In this report, we proposed the calculating method of the minority carrier diffusion length ($L_n$) in CIGS solar cells through biased quantum efficiency (QE). To verify this method's reliability, we chose two CIGS samples which have different grain size and calculated $L_n$ for each sample. First of all, we calculated out that $L_n$ was 56nm and 97nm for small and large grain sized-cell through this method, respectively. Second, we found out the large grain sized-cell has about 7 times lower defect density than the small grain sized-cell using drive level capacitance profiling (DLCP) method. Consequently, we confirmed that $L_n$ was mainly affected by the micro-structure and defect density of CIGS layer, and could explain the cause of Jsc difference between two samples having same band gap.

Power Enhance Effect on the Hybrid Cell Based on Direct Current Nanogenerator and an Organic Photovoltaic Device

  • 윤규철;신경식;이근영;이주혁;김상우
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.298-298
    • /
    • 2013
  • Finding renewable and clean energy resources is essential research to solve global warming and depletion of fossil fuels in modern society. Recently, complex harvesting of energy from multiple sources is available in our living environments using a single device has become highly desirable, representing a new trend in energy technologies. We report that when simultaneously driving the fusion and composite cells of two or more types, it is possible to make an affect the other cells to obtain a greater synergistic effect. To understand the coupling effect of photovoltaic and piezoelectric device, we fabricate the serially integrated hybrid cell (s-HC) based on organic solar cell (OSC) and piezoelectric nanogenerator (PNG). The size of increased voltage peaks when OSC and PNG are working on is larger than the case when only PNG is working. This voltage difference is the Voc change of OSC, not the voltage change of PNG and current density difference between these two cases is manifested more clearly. When the OSC and PNG are working in s-HC at the same time, piezoelectric potential (VPNG) is generated in ZnO and theoretical total voltage is sum of voltage of an OSC (VOSC) and VPNG. However, electrons from OSC are influenced by piezoelectric potential in ZnO and current loss of OSC in whole circuit decreases. As a result, VOSC increases temporarily. Current shows the similar behavior. PNG acts a resistance in the whole circuit and current loss occurs when the electrons from OSC pass through the PNG. But piezoelectric potential recover current loss and decrease the resistance of PNG. Our PNG can maintain piezoelectric potential when the strain is held owing to the LDH layer while general PNG cannot maintain piezoelectric potential. During the section that strain is held, voltage enhancement effect is maintained and same effect appeared even turn off the light. Actually at this time, electrons in ZnO nanosheets move to LDH and trapped by the positive charges in this layer. After this strain is held, piezoelectric potential of ZnO nanosheets is disappeared but potential difference which is developed by negative charge dominant LDH layer is remained. This potential acts similar role like piezoelectric potential in ZnO. Electrons from the OSC also are influenced by this potential and the more current flows.

  • PDF

정상 성인에서 남녀의 소뇌 구조 차이 (Sex Differences in Cerebellar Structure of Healthy Adults)

  • 김지현;배수진;류근택;강민성;임수미;이선호;이소진;고은;정도언
    • 생물정신의학
    • /
    • 제19권2호
    • /
    • pp.77-83
    • /
    • 2012
  • Objectives : Although there have been studies that examine sex differences of the brain structures using magnetic resonance imaging, studies that specifically investigate cerebellar structural differences between men and women are scarce. The purpose of current study was to examine sex differences in structures of the cerebellum using cerebellar template and cerebellum analysis methods. Methods : Sixteen men and twenty women were included in the study. A MATLAB based program (MathWorks, Natick, MA, USA), Statistical Parametric Mapping 5 (SPM5) using the spatially unbiased infra-tentorial atlas template (SUIT) as the cerebellum template, was used to analyze the brain imaging data. Results : There was no significant difference in age between men (mean age=28.1) and women (mean age=27.2). Men showed higher gray matter density than women in two left cerebellar areas including the clusters in the lobules IV and V (a cluster located across the lobules IV and V), and the lobule VIIIb (lobules IV and V, t=4.75, p<0.001 ; lobule VIIIb, t=3.08, p=0.004). Conclusions : The current study found differences in cerebellar gray matter density between men and women. The current study holds its significance for applying the template specifically developed for the analysis of cerebellum.

Effect of Thickness on Electrical Properties of PVDF-TrFE (51/49) Copolymer

  • Kim, Joo-Nam;Jeon, Ho-Seung;Han, Hui-Seong;Im, Jong-Hyung;Park, Byung-Eun;Kim, Chul-Ju
    • 한국전기전자재료학회논문지
    • /
    • 제21권10호
    • /
    • pp.881-884
    • /
    • 2008
  • In this study, polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) in the composition from 51/49, was deposited on platinum for a metal-ferroelectric-metal structure. From XRD patterns, the 70 nm- and 140 nm-thick PVDF-TrFE films showed the intensity peak of near $20^{\circ}$ connected to a ferroelectric phase. Moreover, the thicker film indicated the higher intensity than thinner one. The difference of the remanent polarization (2Pr) at 0 V is decreased gradually from 10.19 to $5.7{\mu}C/cm^2$ as the thickness decrease from 140 to 70 nm. However, when the thickness decreased to 50 nm, the 2Pr rapidly drop to $1.6{\mu}C/cm^2$ so the minimum critical thickness might be at least 70 nm for device. Both different thickness films, 70 and 140 nm, indicated that the characteristic of current density-voltage was measured for $10^{-6}{\sim}10^{-7}A/cm^2$ below 15 V and the thicker film maintained relatively lower current density than thinner one. From these results, we can expect that the electrical properties for the devices particularly ferroelectric thin film transistor using PVDF-TrFE copolymer were able to be on the trade-off relationship between the remanent polarization with the bias voltage and the leakage current.

단층 초전도케이블 샘플에서 교류손실의 수치해석에 대한 연구 (A Study on Numerical Analysis of the AC Loss in a Single-layer Superconducting Cable Sample)

  • 이주영;마용호;류경우;황시돌
    • 한국전기전자재료학회논문지
    • /
    • 제22권7호
    • /
    • pp.606-611
    • /
    • 2009
  • AC loss is one of the important factors for commercialization of a high temperature superconducting (HTS) cable from an economic point of view. But AC loss characteristics of the HTS-cable are not elucidated completely because of its complex structure. As an earlier stage of analyzing the AC loss in the 22.9 kV/50 MVA, 100m HTS-cable system of Korea Electric Power Corporation (KEPCO) which is now in collaboration with us, a two-dimensional (2D) numerical model, which takes into account the nonlinear conductivity properties of a high temperature superconductor, has been developed. In order to examine our 2D model, we have prepared several single-layer cable samples whose AC losses are sufficiently reliable due to their simple structure. The AC losses of the samples were experimentally investigated and then compared with our 2D model. The results show that the numerically calculated AC losses are not in good agreement with the measured ones for the cylindrical cable and deca-cable samples with low critical current density. However, the numerically calculated and measured AC losses are relatively in good agreement for the deca-cable and hex-cable samples with high critical current density, although the difference between these two loss data in the deca-cable sample tends to increase in the low current region.

How to Impose the Boundary Conditions Operatively in Force-Free Field Solvers

  • 최광선;이시백;전홍달
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.69.2-69.2
    • /
    • 2019
  • To construct a coronal force-free magnetic field, we must impose the boundary normal current density (or three components of magnetic field) as well as the boundary normal field at the photosphere as boundary conditions. The only method that is known to implement these boundary conditions exactly is the method devised by Grad and Rubin (1958). However, the Grad-Rubin method and all its variations (including the fluxon method) suffer from convergence problems. The magnetofrictional method and its variations are more robust than the Grad-Rubin method in that they at least produce a certain solution irrespective of whether the global solution is compatible with the imposed boundary conditions. More than often, the influence of the boundary conditions does not reach beyond one or two grid planes next to the boundary. We have found that the 2D solenoidal gauge condition for vector potentials allows us to implement the required boundary conditions easily and effectively. The 2D solenoidal condition is translated into one scalar function. Thus, we need two scalar functions to describe the magnetic field. This description is quite similar to the Chandrasekhar-Kendall representation, but there is a significant difference between them. In the latter, the toroidal field has both Laplacian and divergence terms while in ours, it has only a 2D Laplacian term. The toroidal current density is also expressed by a 2D Laplacian. Thus, the implementation of boundary normal field and current are straightforward and their effect can permeate through the whole computational domain. In this paper, we will give detailed math involved in this formulation and discuss possible lateral and top boundary conditions and their meanings.

  • PDF

Prediction of Land Use/Land Cover Change in Forest Area Using a Probability Density Function

  • Park, Jinwoo;Park, Jeongmook;Lee, Jungsoo
    • Journal of Forest and Environmental Science
    • /
    • 제33권4호
    • /
    • pp.305-314
    • /
    • 2017
  • This study aimed to predict changes in forest area using a probability density function, in order to promote effective forest management in the area north of the civilian control line (known as the Minbuk area) in Korea. Time series analysis (2010 and 2016) of forest area using land cover maps and accessibility expressed by distance covariates (distance from buildings, roads, and civilian control line) was applied to a probability density function. In order to estimate the probability density function, mean and variance were calculated using three methods: area weight (AW), area rate weight (ARW), and sample area change rate weight (SRW). Forest area increases in regions with lower accessibility (i.e., greater distance) from buildings and roads, but no relationship with accessibility from the civilian control line was found. Estimation of forest area change using different distance covariates shows that SRW using distance from buildings provides the most accurate estimation, with around 0.98-fold difference from actual forest area change, and performs well in a Chi-Square test. Furthermore, estimation of forest area until 2028 using SRW and distance from buildings most closely replicates patterns of actual forest area changes, suggesting that estimation of future change could be possible using this method. The method allows investigation of the current status of land cover in the Minbuk area, as well as predictions of future changes in forest area that could be utilized in forest management planning and policymaking in the northern area.

도시고속도로 기본구간의 서비스수준별 중차량 영향 분석 (The Analysis of the Impact of Heavy Vehicles in Urban Freeway Basic Section)

  • 김태헌;노창균;손봉수
    • 대한교통학회지
    • /
    • 제30권1호
    • /
    • pp.75-83
    • /
    • 2012
  • 동일한 수의 중차량 비율이 도로 용량에 미치는 영향이 고속도로 소통상태가 원활한 서비스수준 A와 그렇지 않은 서비스수준 E의 경우에 따라 같지 않음이 지적되고 있다. 우리나라 고속도로 용량산정 방법 역시 고속도로 운영 상태를 고려하지 않으며 중(重)차량 영향을 반영하고 있다. 본 연구는 고속도로 소통 상태별 중차량 비율이 도로 용량에 미치는 수준을 기초 시험 수준에서 진단한다. 서울 동부간선도로에서 총 15일 (360시간) 자료를 수집하였으며 이를 15분단위로 가공하여 분석하였다. 중차량 비율이 용량에 미치는 영향을 각 서비스수준별로 분석한 결과, 현재의 용량산정방법은 서비스수준 B~C에서 용량이 과소 추정되고, 서비스수준 E에서는 용량이 과대 추정되는 것을 확인하였다. 연구 결과는 현재의 도로용량편람에서 제시한 방안과는 달리 고속도로 소통상태를 반영하여 중차량 보정계수가 적용되어야 함을 의미한다.

Chemical Shift Artifact Correction in MREIT

  • Minhas, Atul S.;Kim, Young-Tae;Jeong, Woo-Chul;Kim, Hyung-Joong;Lee, Soo-Yeol;Woo, Eung-Je
    • 대한의용생체공학회:의공학회지
    • /
    • 제30권6호
    • /
    • pp.461-468
    • /
    • 2009
  • Magnetic resonance electrical impedance tomography (MREIT) enables us to perform high-resolution conductivity imaging of an electrically conducting object. Injecting low-frequency current through a pair of surface electrodes, we measure an induced magnetic flux density using an MRI scanner and this requires a sophisticated MR phase imaging method. Applying a conductivity image reconstruction algorithm to measured magnetic flux density data subject to multiple injection currents, we can produce multi-slice cross-sectional conductivity images. When there exists a local region of fat, the well-known chemical shift phenomenon produces misalignments of pixels in MR images. This may result in artifacts in magnetic flux density image and consequently in conductivity image. In this paper, we investigate chemical shift artifact correction in MREIT based on the well-known three-point Dixon technique. The major difference is in the fact that we must focus on the phase image in MREIT. Using three Dixon data sets, we explain how to calculate a magnetic flux density image without chemical shift artifact. We test the correction method through imaging experiments of a cheese phantom and postmortem canine head. Experimental results clearly show that the method effectively eliminates artifacts related with the chemical shift phenomenon in a reconstructed conductivity image.

백드래프트의 중력흐름에 미치는 구획실 내부 초기조건 및 개구부 형상의 영향 (Effects of Initial Condition and Opening Geometry of a Compartment on the Gravity Current in the Backdraft)

  • 박지웅;오창보;한용식;도규형
    • 한국안전학회지
    • /
    • 제30권6호
    • /
    • pp.18-25
    • /
    • 2015
  • Computational study of a gravity current prior to the backdraft was conducted using fire dynamic simulator (FDS). Various initial conditions of mixture compositions and compartment temperature as well as four opening geometries (Horizontal, Door, Vertical, and Full opening) were considered to figure out their effects on the gravity current. The density difference ratio (${\beta}$) between inside and outside of compartment, the gravity current time ($t_{grav}$) and velocity ($v_{grav}$), and non-dimensional velocity ($v^*$) were introduced to quantify the flow characteristics of the gravity current. Overall fluid structure of the gravity current at the fixed opening geometry showed similar development process for different ${\beta}$ conditions. However, $t_{grav}$ for entering air to reach the opposed wall to the opening geometry increased with ${\beta}$. Door, Vertical, and Horizontal openings where openings are attached on the ground showed similar development process of the gravity current except for Horizontal opening, which located on the middle of the opening wall. The magnitude of $v_{grav}$ at fixed ${\beta}$ was, from largest to smallest, Full > Vertical > Door > Horizontal, but it depended on both the size and location of the opening. On the other hand, $v^*$ was found to be independent to ${\beta}$, and only depended on the geometry of the opening.