Reversible data embedding theory has marked a new epoch for data hiding and information security. Being reversible, the original data and the embedded data as well should be completely restored. Difference expansion transform is a remarkable breakthrough in reversible data hiding scheme. The difference expansion method achieves high embedding capacity and keeps the distortion low. This paper shows that the difference expansion method with simplified location map, and new expandability and changeability can achieve more embedding capacity while keeping the distortion almost the same as the original expansion method.
Journal of the Korean Society of Clothing and Textiles
/
v.28
no.2
/
pp.344-353
/
2004
The purpose of this study was to offer the basis contributes to extract the standardized body data from 3D body measuring for women aged 60 and older. The WB4 of Cyberware was used, and the measuring program of 3D scanning data was 3DM. This study was focused to verify the reliability of 3D data and to offer the effective utilization of 3D measuring on the research for elderly women■s body. Subjects were 19 women aged 60 and older. And three women in late twenties and three dressforms for women were comparing subjects to analyze the signiscant difference by age or human body variable making error. First, 3D scanning was executed twice on each subject, but any significant difference was not appear between two scanning data. So we certifed we could get the consistent and reliable data from the 3D scanner used in this study. Second, the reliability of 3D measuring data was analyzed, and the error range which meant the difference between 3D data and traditional measuring data was analyzed. In elderly women, the significant difference between two data was appeared in 19 body parts. The 7 of 19 were concerned with armpit point. In young women, three significant difference were appeared, and in dressforms, any significant difference was not certified. From these results, we could certify that age or human body variable produced the difference between two data. Third, the data of elderly women from three measuring methods, 3D measuring, traditional measuring, and measuring on 2D photographs were compared. From the result, we found that the 3D measuring data was quite reliable for most body parts excluding some width parts. But in elderly women, there were some limitation to extract reliable data because of their unique body characteristics. In order to be a role of the effective measuring method, the 3D measuring protocol reflected the body characteristics of each age or gender had to be prepared.
Journal of the Korean Data and Information Science Society
/
v.19
no.4
/
pp.1379-1390
/
2008
This article deals with the problem of testing the difference of quantiles in exponential distributions. We propose Bayesian hypothesis testing procedures for the difference of two quantiles under the noninformative prior. The noninformative prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to a multiplicative constant. So we propose the objective Bayesian hypothesis testing procedures based on the fractional Bayes factor and the intrinsic Bayes factor under the matching prior. Simulation study and a real data example are provided.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.9
no.6
/
pp.573-577
/
2016
In this paper, reversible data embedding scheme was proposed using the locality of image and the adjacent pixel difference sequence. Generally, locality exists in natural image. The proposed scheme increases the amount of embedding data and enables data embedding at various levels by applying a technique of predicting adjacent pixel values using image locality to an existing technique APD(Adjacent Pixel Difference). The experimental results show that the proposed scheme is very useful for reversible data embedding.
Journal of the Korean Institute of Telematics and Electronics
/
v.12
no.2
/
pp.1-10
/
1975
This paper presents an adaptive data compression algorithm for video data. The coling complexity due to the high correlation in the given data sequence is alleviated by coding the difference data, sequence rather than the data sequence itself. The adaptation to the nonstationary statistics of the data is confined within a code set, which consists of two constant length cades and six modified Shannon.Fano codes. lt is assumed that the probability distributions of tile difference data sequence and of the data entropy are Laplacian and Gaussion, respectively. The adaptive coding performance is compared for two code selection criteria: entropy and $P_r$[difference value=0]=$P_0$. It is shown that data compression ratio 2 : 1 is achievable with the adaptive coding. The gain by the adaptive coding over the fixed coding is shown to be about 10% in compression ratio and 15% in code efficiency. In addition, $P_0$ is found to he not only a convenient criterion for code selection, but also such efficient a parameter as to perform almost like entropy.
Communications for Statistical Applications and Methods
/
v.11
no.3
/
pp.447-454
/
2004
In this paper, we consider the bootstrap method to the interval estimation of the difference of quantiles of right censored data. We showed the validity of bootstrap method and compare with others with real data example. In simulation various resampling schemes for right censored data are also considered.
Journal of the Korean Data and Information Science Society
/
v.24
no.6
/
pp.1449-1454
/
2013
There are many methods for measuring the difference between two location parameters. In this paper, statistics are proposed in order to estimate the difference of two location parameters. The statistics are designed not using the means, variances, signs and ranks, but with the cumulative distribution functions. Hence these are measured as the differences in the area between two univariate cumulative distribution functions. It is found that the difference in the area between two empirical cumulative distribution functions is the difference of two sample means, and its integral is also the difference of two population means.
The Transactions of The Korean Institute of Electrical Engineers
/
v.59
no.6
/
pp.1159-1166
/
2010
To improve prediction quality of a nonlinear prediction system, the system's capability for uncertainty of nonlinear data should be satisfactory. This paper presents a TSK fuzzy prediction system that can consider and deal with the uncertainty of nonlinear data sufficiently. In the design procedures of the proposed system, HCBKA(Hierarchical Correlationship-Based K-means clustering Algorithm) was used to generate the accurate fuzzy rule base that can control output according to input efficiently, and the first-order difference method was applied to reflect various characteristics of the nonlinear data. Also, multiple prediction systems were designed to analyze the prediction tendencies of each difference data generated by the difference method. In addition, to enhance the prediction quality of the proposed system, an error compensation method was proposed and it compensated the prediction error of the systems suitably. Finally, the prediction performance of the proposed system was verified by simulating two typical time series examples.
In this paper, we propose a method to detect concept drift by applying Convolutional Neural Network (CNN) in a data stream environment. Since the conventional method compares only the final output value of the CNN and detects it as a concept drift if there is a difference, there is a problem in that the actual input value of the data stream reacts sensitively even if there is no significant difference and is incorrectly detected as a concept drift. Therefore, in this paper, in order to reduce such errors, not only the output value of CNN but also the probability vector are used. First, the data entered into the data stream is patterned to learn from the neural network model, and the difference between the output value and probability vector of the current data and the historical data of these learned neural network models is compared to detect the concept drift. The proposed method confirmed that only CNN output values could be used to reduce detection errors compared to how concept drift were detected.
Journal of the Korean Operations Research and Management Science Society
/
v.40
no.1
/
pp.139-154
/
2015
This paper uses the Heckman model to evaluate the income difference between the public sector and the private sector based on the CHNS data. The research finds that the difference of the public sector versus the private sector between the west area and the east area is about 10% from 1989 to 2000, the transition of the income difference is smooth, that data has made sharp increase to 32% from 2000 to 2011. Considering the income difference between the west area and the central area, the central area and the east area from 1989 to 1997, the data is about 10~15%, from 2000 to 2011 is rocketing time, the data reaches 20%. This paper is very revealing about the income difference ofthe public sector versus the private sector is increasing year after year, and the economy is developing rapidly but with imbalance among different areas in China. It would provides the reference for adjust the income distribution system in future.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.