• Title/Summary/Keyword: diethyl phtalate

Search Result 4, Processing Time 0.021 seconds

Isolation and Identification of Antimicrobial Compound from Amarantus lividus (참비름 추출물에서 항균성 물질의 분리 및 동정)

  • Oh, Young-Sook;Lee, Shin-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.2
    • /
    • pp.123-129
    • /
    • 2005
  • Isolation and identification of pathogens from slaughter and meat processing plant were investigated. Antimicrobial activity of Amaranthus lividus against isolated pathogens such as Aeromonas sobria, Escherichia coli, Escherichia coli O157, Listeria monocytogenes, Salmonella spp., and Staphylococcus aureus was investigated. Among the chloroform, ethyl acetate and buthanol fraction of amaranthus lividus showed inhibitory effect against Aeromonas sobria CLFM1 and Escherichia coli CLFM2. Antimicrobial substance in chloroform fraction was isolated by silica gel adsorption column chromatography, sephadex LH-20 column chromatography and silica gel partition column chromatography. The antimicrobial compound of amaranthus lividus was identified as diethyl phtalate by HPLC, GC-MS, H-NMR and C-NMR.

Chemical Changes of Kanjang Made with Barley Bran (보리등겨로 제조한 간장의 각종 성분 변화)

  • Lee, Eun-Jeong;Kwon, O-Jun;Im, Moo-Hyeog;Choi, Ung-Kyu;Son, Dong-Hwa;Lee, Suk-Il;Kim, Dae-Gon;Cho, Young-Je;Kim, Woo-Seong;Kim, Sung-Hong;Chung, Yung-Gun
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.751-756
    • /
    • 2002
  • For the development of functional jang-products, kanjang was prepared using barley bran. Optical density of barley bran kanjang was significantly high at 15 days after fermentation, and the amount of extract was $2{\sim}3$ fold higher than that of soybean kanjang. Among the flavor components identified in barley bran kanjang, the content of 2-furancarboxaldehyde was the highest, followed by 4-vinyl-2-methoxy-phenol, benzene-acetaldehyde, palmitic acid, and methyl-9,12-octadecadienoate. In barley bran and soybean mixtare (1 : 1) kanjang, the content of 2-furancarboxaldehyde was the highest, followed by benzeneacetaldehyde, diethyl phtalate, palmitic acid, and 2-chloroethyl linoleate. Flavor components detected in both barley bran kanjang and barey bran and soybean mixture kanjang were 2-furancarboxaldehyde, benzaldehyde, benzeneacetaldthyde, 4-vinyl-2-mehtoxy-phenol, 1-furfuryl-2-formy pyrrole, dimethyl-1,2-benzenedicarboxylate, diethyl phtalate, palmiticacid, dibutyl-1,2-benzenedicarboxylate, and di-(2-ethylhexyl)phthalate.

Organic Compounds in the Nak Dong River and Its Toxicity (낙동강 수질중 유기물질과 독성)

  • 류병호;심종환;최진택;조현철;정종순
    • Journal of Environmental Health Sciences
    • /
    • v.20 no.1
    • /
    • pp.39-53
    • /
    • 1994
  • This study aims to investigate organic compounds and its toxicity by Ames test and chromosomal aberration in the water of the Nak Dong River. Six sampling sites such as Goryung, Hagueun, Maelie, Duksan, Haedong and Myungiang were selected for these pur15oses. 200 l water samples were absorbed on XAD-2 resin columns (2.5X30cm), eluted with organic solvents mixture of acetone: cyclohexane and then dried under vacuum condition. The extracts from the XAD-2 resin was injected into GC/MS and 184 organic compounds were identified such as aldehydes, aromatic compounds, ketones, phenols, hydrocarbons, alcohols, carboxylic acids, alkanes and some unknowns. The US EPA priority pollutants such as naphthlene, bis(2-ethylhexyl)phthalate and other pollutants, 1,2-diethyl benzene, 1,2,3,4-tetrahydronaphthalene and cyclohexanol were detected in these samples. The concentration of chemical pollutants such as 1,2-diethyl benzene, nephthalene, 1,2,3,4-tetrahydronaphthalene, bis(2-ethylhexyl)phthalate and cyclohexanol were ranged into 1.228 $\mu$g/l, 298 $\mu$g/l, 30.191 $\mu$g/l, 1.147 $\mu$g/l and 2.839 $\mu$g/l, respectively. The mutagenic activity of XAD-2 extracts were tested on Salmonella typhimurium TA 98, TA 100, TA 1535 and TA 1537 and then exhibited strong mutagenic activity against S. typhimurium TA 98 and TA 100 in the presence of S$_9$. Amon them, bis(2-ethylhexyl)phtalate and 1,2-diethyl benzene showed the most strongest mutagenic activity against S. typhimurium TA 98 and TA 100 in the presence of S$_9$. On the other hands, chromosomal aberration of XAD-2 extracts in the human blood cells were not occurred by the sampling water at Goryung, Hagueun, Maelie and Duksan, Chromosomal aberration were also not occurred by the each concentration of 0.05, 0.1 amd 0.3 mg/l of each 1,2-diethyl benzol, bis(2-ethylhexyl)phthalate, naphthalene, phenol, cyclohexanol and benzothiazol test solution.

  • PDF

Data Mining Approaches for DDoS Attack Detection (분산 서비스거부 공격 탐지를 위한 데이터 마이닝 기법)

  • Kim, Mi-Hui;Na, Hyun-Jung;Chae, Ki-Joon;Bang, Hyo-Chan;Na, Jung-Chan
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.3
    • /
    • pp.279-290
    • /
    • 2005
  • Recently, as the serious damage caused by DDoS attacks increases, the rapid detection and the proper response mechanisms are urgent. However, existing security mechanisms do not effectively defend against these attacks, or the defense capability of some mechanisms is only limited to specific DDoS attacks. In this paper, we propose a detection architecture against DDoS attack using data mining technology that can classify the latest types of DDoS attack, and can detect the modification of existing attacks as well as the novel attacks. This architecture consists of a Misuse Detection Module modeling to classify the existing attacks, and an Anomaly Detection Module modeling to detect the novel attacks. And it utilizes the off-line generated models in order to detect the DDoS attack using the real-time traffic. We gathered the NetFlow data generated at an access router of our network in order to model the real network traffic and test it. The NetFlow provides the useful flow-based statistical information without tremendous preprocessing. Also, we mounted the well-known DDoS attack tools to gather the attack traffic. And then, our experimental results show that our approach can provide the outstanding performance against existing attacks, and provide the possibility of detection against the novel attack.