• Title/Summary/Keyword: diethanolamine(DEA)

Search Result 25, Processing Time 0.021 seconds

A Study of Upgrading Real Biogas via CO2 Precipitation Route Under Indian Scenario

  • Gehlaut, Avneesh Kumar;Gaur, Ankur;Hasan, Shabih Ul;Park, Jin-Won
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.381-387
    • /
    • 2018
  • Our study focuses on upgrading real biogas obtained under Indian scenario using carbon capture and utilization (CCU) technology to remove carbon dioxide ($CO_2$) and utilize it by forming metal carbonate. Amines such as monoethanolamine (MEA), diethanolamine (DEA), and sodium hydroxide (NaOH) were used to rapidly convert gaseous $CO_2$ to aqueous $CO_2$, and $BaCl_2$ was used as an additive to react with the aqueous $CO_2$ and rapidly precipitating the aqueous $CO_2$. All experiments were conducted at $25^{\circ}C$ and 1 atm. We analyzed the characteristics of the $BaCO_3$ precipitates using X-ray diffractometry (XRD), scanning electron microscopy - Energy dispersive spectroscopy (SEM-EDS) and Fourier-transform infrared spectroscopy (FT-IR) analyses. The precipitates exhibited witherite morphology confirmed by the XRD results, and FT-IR confirmed that the metal salt formed was $BaCO_3$, and EDS showed that there were no traces of impurities present in it. The quantity of the $BaCO_3$ was larger when formed with DEA. Also, a comparison was done with a previous study of ours conducted in Korean conditions. Finally, we observed that the carbonate obtained using real biogas showed similar properties to carbonates available in the market. An economic analysis was done to show the cost effectiveness of the method employed by us.

The Manufacturing Mechanism of Nano-some and Method of Capsulation of Kojic Acid and Kojic Dipalmitate with Hydrogenated Lecithin and Co-emulsifiers (Hydrogenated Lecithin 과 Co-emulsifier를 사용한 Nano-some의 제조 메커니즘과 Kojic Acid 및 Kojic Dipalmitate의 캡슐화 방법)

  • Kim, In-Young;Jae, Koo-Hwan;Lee, Joo-Dong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.248-256
    • /
    • 2000
  • We investigated the property of formation of mono-vesicle(designated nano-some) with using of the combined co-emulsifiers and phospholipid. Nano-some was prepared with hydrogenated lecithin(HL) and diethanolamine cetyl phosphate(DEA-CP) by swelling reaction. Kojic acid and kojic dipalmitate could be made stabilization by nano-some system using microfluidizer(MF). Nano-some has a good affinity to skin by means of this system. The composition was compounded by 2% of hydrogenated lecithin (phosphatidyl choline contained with 75%, 0.5% of DEA-CP and 0.5% of diglyceryl dioleate (DGDO). To make nano-some, several conditions of MF have to be considered as follows. The optimum pH was 6.0. The pressure was 10,000psi and passage temperature was at $306^{\circ}C$. The nano-some base was passed to homogenize continually 3 times through MF. The Particle size distributions of the vesicles were with in $57{\sim}75.7nm$(mean 66nm) by measuring the Zetasizer-3000. Zeta potential of vesicles with 3 times passage through MF was -24.8mV. Formations for nano-some vesicle certificated photograph by scanning electric magnification (SEM). Stability of nano-some was very good for 6months. The turbidity was very good transparency compared nano-some with liposome. It was formed the mono vesicle in the opposite direction to be formed the multi-lamellar vesicle of liposome.

Dehydration of D-xylose over SAPO Catalysts Synthesized with Various Structure Directing Agents (다양한 구조 유도제로 합성된 SAPO촉매를 이용한 자일로오스의 탈수화반응)

  • Kim, Saet Byul;You, Su Jin;Kim, Yong Tae;Chae, Ho-Jeong;Jeong, Soon-Yong;Park, Eun Duck
    • Korean Chemical Engineering Research
    • /
    • v.48 no.6
    • /
    • pp.684-689
    • /
    • 2010
  • We synthesized a variety of SAPO catalysts with various structure directing agents by the hydrothermal method and applied them to the D-xylose dehydration. Single or mixtures of organic amines, viz. tetraethylammonium hydroxide(TEAOH), dipropylamine(DPA), diethylamine(DEA), morpholine and diethanolamine(DEtA) were used as structure directing agents. The $N_2$-isotherm, $NH_3$-temperature programmed desorption(TPD) and temperature programmed oxidation(TPO) were conducted to characterize SAPO catalysts. Among tested SAPO catalysts, the SAPO-34 synthesized with morpholine showed the highest furfural yield. The external surface area as well as the surface concentration of acid sites appeared to affect the catalytic activity for the dehydration of xylose into furfural.

Study of Separation of carbon dioxide through hollow fiber membrane contactor (중공사막 접촉장치를 통한 이산화탄소 분리에 관한 연구)

  • 염봉열;김민수;이용택;박유인;이규호
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.61-64
    • /
    • 1997
  • 1. 서론 : 적절한 이산화탄소의 분리는 지구온난화의 가속현상을 늦출 수 있을 뿐만 아니라 각종 탄화수소가스의 원료로 분리 정제된 이산화탄소를 재이용할 수 있으므로 경제적으로 매우 중요하다. 이산화탄소 분리에 사용되던 기존 공정들의 단점을 보완할 수 있는 대체방안으로 최근에 개발되기 시작한 것이 소수성의 다공성 고분자 분리막(hydrophobic porous ploymeric membrane) 방법인데, 이는 모듈의 유효 막 표면적이 상대적으로 크고 기체와 액체의 흐름을 독립적으로 제어할 수 있으므로 범람 등의 현상이 없으나 막 자체의 저항이 비교적 큰 단점을 가지고 있다. Qi와 Cussler는 이러한 특성을 가지는 중공사막 모듈에서의 기-액 흐름에 대한 물질전달 상관관계식을 얻었으며[1], Karoor 등은 여러 가지 중공사막 모듈을 사용하여 순수물과 diethanolamine(DEA) 등의 흡수제에 대한 이산화탄소의 물질전달 거동을 수치모델과 실험을 통하여 고찰하였다[3]. 또한 중공사막 접촉기의 실제적 응용에 대하여 Matsumoto 등은 화력발전소에서 발생하는 연소가스 내의 이산화탄소 흠수에 대한 연구를 수행하였다[4]. 본 연구에서는 중공사막 접촉장치를 사용하여 흡수제를 순수물과 탄산칼륨($K_2CO_3$)을 사용했을 경우의 이산화탄소의 분리 거동을 수치모델과 실험을 통하여 고찰하였다. 수치모델의 경우 이전까지의 연구가 반응이 없는 경우나 반응식을 간략화시킨 경우에 한정되었는데 비하여, 반으이 있는 경우 각각의 반응물질들의 거동을 고려한 반응식을 유도하여 해를 구하고자 하녔다.

  • PDF

Preparation and Characterization of CdSe nanoparticle for Solar Cell application (태양전지용 CdSe 나노입자의 합성)

  • Kim, Shin-Ho;Park, Myoung-Guk;Lee, Bo-Ram;Lee, Hyun-Ju;Kim, Yang-Do
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.318-321
    • /
    • 2007
  • CdSe nanoparticles were prepared by chemical solution methods using $CdCl_2{\cdot}4H_2O$ (or $Cd(NO_3)_ 2{\cdot}4H_2O$) and $Na_2SeSO_3$. The characteristics of CdSe nanoparticles were controlled by the react ion time, reaction temperature and reaction method as well as the surfactants. Cetyltrimethyl ammonium bromide(CTAB) was used as a capping agent to control the chemical reactions in aqueous solution. Polyvinylalcohol(PVA) was used as a templet in sono-chemical method. CdSe nanoparticles synthesized in aqueous solution showed homogeneous size distribution with relatively stable surface. CdSe nanoparticles synthesized in non-aqueous solution containing diethanolamine(DEA) showed the structure transformation from cubic to hexagonal as the reduction temperature increased from 80 to $160^{\circ}C$. Core shell CdSe was synthesized by sono-chemical method. Characteristics of CdSe nanoparticles were analyzed using transmission electron microscopy(TEM), x-ray photoelectron spectroscopy(XPS), x-ray diffraction(XRD), UV-Vis absorption spectra, fourier transform infrared spectroscopy(FT-IR) and photoluminescence spectra spectroscopy(PL). This paper presents simple routes to prepare CdSe nanoparticles for solar cell applications.

  • PDF