• Title/Summary/Keyword: diesel engine oil

Search Result 368, Processing Time 0.031 seconds

Corrosion Characteristics of Welding Zone by Types of Repair Welding Filler Metals and Post Weld Heat Treatment

  • Lee, Sung-Yul;Moon, Kyung-Man;Lee, Yeon-Chang;Kim, Yun-Hae;Jeong, Jae-Hyun
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.4
    • /
    • pp.209-213
    • /
    • 2012
  • Recently, the fuel using in the diesel engines of marine ships has been changed to a low quality of heavy oil because of the steady increase in the price of oil. Therefore, the wear and corrosion in all parts of the engine such as the cylinder liner, piston crown, and spindle and seat ring of exhaust valves has correspondingly increased. The repair welding of a piston crown is a unique method for prolonging its lifetime from an economic point of view. In this case, filler metals with a high corrosion and wear resistance are mainly being used for repair welding. However, often at a job site on a ship, a piston crown is actually welded with mild filler metals. Therefore, in this study, mild filler metals such as CSF350H, E8000B2, and 435 were welded to SS401 steel as the base metal, and the corrosion properties of the weld metals with and without post weld heat treatment were investigated using some electrochemical methods in a 0.1% $H_2SO_4$ solution. The weld metal welded with CSF350H filler metal exhibited the best corrosion resistance among these filler metals, irrespective of the heat treatment. However, the weld metal zones of the E8000B2 and 435 filler metals exhibited better and worse corrosion resistance with the heat treatment, respectively. As a result, it is suggested that in the case of repair welding with CSF350H and 435 filler metals, no heat treatment is advisable, while heat treatment is desirable if E8000B2filler metal is used with repair welding.

A study on dermatologic diseases of workers exposed to cutting oil (절삭유 취급 근로자의 피부질환에 관한 연구)

  • Chun, Byung-Chul;Kim, Hee-Ok;Kim, Soon-Duck;Oh, Chil-Hwan;Yum, Yong-Tae
    • Journal of Preventive Medicine and Public Health
    • /
    • v.29 no.4 s.55
    • /
    • pp.785-799
    • /
    • 1996
  • We investigated the 1,004 workers who worked in a automobile factory to study the epidemiologic characterists of dermatoses due to cutting oils. Among the workers, 667(66.4%) answered the questionaire. They are belong to 5 departments of the factory-the Engine-Work(258 workers), Gasoline engine Assembly(210), Diesel engine Assembly(96), Power train Work(86), Power train Assembly(17). We measured the oil mist concentration in air of the departments and examined the workers who had dermatologic symptoms. The results were follows; 1) Oil mist concentration ; Of all measured points(52),9 points(17.2%) exeeded $5mg/m^3$- the time-weighed PEL-and one department had a upper confidence limit(95%) higher than $5mg/m^3$. 2) Dermatologists examined 213 workers. 172 of them complained any skin symptoms at that time - itching(32.5%), papule(21.6%), scale(15.7%), vesicle(12.5%) in order. The abnormal skin site found by dermatologist were palm(29.3%), finger & nail(24.6%), forearm(16.2%), back of hand(8.4%) in order. 3) As the result of physical examination, we found that 160 workers had skin diseases. Contact dermatitis was the most common; 69 workers had contact dermatitis alone(43.1%), 11 had contact dermatitis with acne(6.9%), 10 had contact dermatitis with folliculitis(6.3%), 1 had contact dermatitis with acne & folliculitis, and 1 had contact dermatitis with abnormal pigmentation. Others were folliculitis(9 workers, 5.6%), acne(8, 5.0%), folliculitis & acne (2, 1.2%), keratosis(1, 0.6%), abnormal pigmentation (1, 0.6%), and non-specific hand eczema (47, 29.3%). 4) The prevalence of any skin diseases was 34.0 pet 100 in cutting oil users, and 13.3 per 100 in non- users. Especially, the prevalence of contact dermatitis was 23.0 per 100 in cutting oil users and 23.0 per 100 in non-users. 5) We tried patch test(standard serise, oil serise, organic solvents) on 49 patients to differentiate allergic contact dermatitis from irritant contact dermatitis and found 20 were positive. 6) In a multivariate analysis(independant=age, tenure, kinds of cutting oil), the risk of skin diseases was higher in the water-based cutting oil user and both oil user than non-user or neat oil user(odds ratio were 2.16 and 2.78, respectively). And the risk of contact dermatitis was much higher at the same groups(odds ratio were 5.16 and 6.82, respectively).

  • PDF

Study of Behavior Characteristics of Impinging Spray of Emulsified Fuel (에멀젼연료 충돌분무의 거동특성에 관한 연구)

  • Yeom, Jeong Kuk;Kim, Hak Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.909-916
    • /
    • 2015
  • In this study, to investigate the effect of spray behavior characteristics, we induce the mixing ratio of emulsified fuel using impinging spray. We formulate the emulsified fuel by mixing diesel and hydrogen peroxide($H_2O_2$). We set the temperature of the heating plate to $150^{\circ}C$, $200^{\circ}C$, and $250^{\circ}C$, and set the injection pressures to 400, 600, 800, and 1000bar. The surfactants for the emulsified fuel mixture, which were mixed span80 and tween80 was mixed as 9:1, were fixed to 3% of the total volume of the emulsified fuel. We set the mixing ratio of $H_2O_2$ in the emulsified fuel as emulsified fuel(EF)0, EF2, EF12, and EF22. Further, we visualize the evaporation impinging spray using the Schlieren method. Based on the results of this study, we found that a higher temperature and injection pressure of the heating plate impingement led to the active diffusion of the fuel vapor, which promoted emulsified fuel evaporation. When the emulsified fuel is utilized in an actual engine, because of the temperature-drop effect of the combustion chamber, which is due to the evaporation of $H_2O_2$ in fuel and faster mixture formation is expected to decrease the engine emissions.

A study on the emission characteristics of greenhouse gases according to the vehicle technology, fuel oil type and test mode (차량기술, 연료 유종 및 시험모드 특성에 따른 온실가스의 배출특성 연구)

  • Lee, Jung-Cheon;Lee, Min-Ho;Kim, Ki-Ho;Park, An-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.962-973
    • /
    • 2017
  • Concerns about an air pollution are gradually increasing at home and abroad. The automotive and fuel researchers are trying to reduce emissions and greenhouse gases of vehicles through a research on new engine designs and innovative after-treatment systems using clean fuels (eco-alternative fuel) and fuel quality improvements. In this paper, we stduy the emission characteristics of greenhouse gases on seven vehicles using gasoline, diesel, and LPG by legal test mode in domestic and abroad.(Urban mode, Highway mode, rapidly acceleration and deceleration, using air conditioner, low temperature condition) Regardless of fuels, most of the greenhouse gases tend to show the worst results in cold FTP-75 mode. In the case of A vehicles (2.0 MPI) and B vehicles (2.4 GDI) using a gasoline fuel, the factors that increase greenhouse gases are in order of a rapidly acceleration and deceleration, using air conditioner, low temperature condition. But G vehicles(LPLi) have different emission characteristics from another vehicles. In the case of A vehicles (2.0 w/o DPF) and B vehicles (2.2 with DPF) using a diesel fuel, the factors that increase greenhouse gases are in order of a rapidly acceleration and deceleration, using air conditioner, low temperature condition. However, the factor of F vehicles are in order of low temperature condition, using air conditioner, rapidly acceleration and deceleration. In conclusion, it will be an effective method to apply different technologies of emission reduction for each fuel.

Experimental Study on Reduction of Particulate Matter and Sulfur Dioxide Using Wet Electrostatic Precipitator (습식전기집진기를 활용한 입자상 물질 및 황산화물 저감 성능에 관한 실험적 연구)

  • Kim, Jong-Lib;Oh, Won-Chul;Lee, Won-Ju;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.898-904
    • /
    • 2021
  • This experimental study aims to investigate the use of a wet electrostatic precipitator as a post-treatment device to satisfy the strict emission regulations for sulfur oxides and particulate matter (PM). The inlet/outlet of a wet electrostatic precipitator was installed in a funnel using a marine four-stroke diesel engine (STX-MAN B&W) consuming marine heavy fuel oil (HFO) with a sulfur content of about 2.1%. Measurements were then obtained at the outlet of the wet electrostatic precipitator; an optical measuring instrument (OPA-102), and the weight concentration measurement method (Method 5 Isokinetic Train) were used for the PM measurements and the Fourier transform infrared (FT-IR; DX-4000) approach was used for the sulfur oxide measurements. The experimenst were conducted by varying the engine load from 50%, to 75% and 100%; it was noted that the PM reduction efficiency was a high at about 94 to 98% under all load conditions. Additionally, during the process of lowering the exhaust gas temperature in the quenching zone of the wet electrostatic precipitator, the sulfur dioxide (SO2) values reduced because of the cleaning water, and the reduction rate was confirmed to be 55% to 81% depending on the engine load.

Development of Friction Loss Measurement Device at Low Speed of Turbocharger in a Passenger Vehicle (승용차용 터보과급기의 저속 영역 마찰 손실 측정 장치 개발)

  • Chung, Jin Eun;Lee, Sang Woon;Jeon, Se Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.585-591
    • /
    • 2017
  • Turbocharging is widely used in diesel and gasoline engines as an effective way to reduce fuel consumption. But turbochargers have turbo-lag due to mechanical friction losses. Bearing friction losses are a major cause of mechanical friction losses and are particularly intensified in the lower speed range of the engine. Current turbochargers mostly use oil bearings (two journal bearings and one thrust bearing). In this study, we focus on the bearing friction in the lower speed range. Experimental equipment was made using a drive motor, load cell, magnetic coupling, and oil control system. We measured the friction losses of the turbocharger while considering the influence of the rotation speed, oil temperature, and pressure. The friction power losses increased exponentially when the turbocharger speed increased.

Comparison of Source Apportionment of PM2.5 Using PMF2 and EPA PMF Version 2

  • Hwang, In-Jo;Hopke, Philip K.
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.2
    • /
    • pp.86-96
    • /
    • 2011
  • The positive matrix factorization (PMF2) and multilinear engine (ME2) models have been shown to be powerful environmental analysis techniques and have been successfully applied to the assessment of ambient particulate matter (PM) source contributions. Because these models are difficult to apply practically, the US EPA developed a more user-friendly version of the PMF. The initial version of the EPA PMF model does not provide any rotational capabilities; for this reason, the model was upgraded to include rotational functions in the EPA PMF ver. 2.0. In this study, PMF and EPA PMF modeling identified ten particulate matter sources including secondary sulfate I, vehicle gasoline, secondary sulfate II, secondary nitrate, secondary sulfate III, incinerators, aged sea salt, airborne soil particles, oil combustion, and diesel emissions. All of the source profiles determined by the two models showed excellent agreement. The calculated average concentrations of $PM_{2.5}$ were consistent between the PMF2 and EPA PMF ($17.94{\pm}0.30{\mu}g/m^3$ and $17.94{\pm}0.30\;{\mu}g/m^3$, respectively). Also, each set of estimated source contributions of the PMF2 and EPA PMF showed good agreement. The results from the new EPA PMF version applying rotational functions were consistent with those of PMF2. Therefore, the updated version of EPA PMF with rotational capabilities will provide more reasonable solutions compared with those of PMF2 and can be more widely applied to air quality management.

Evaluation of Characteristics of Welding Zones Welded with Inconel 718 Filler Metal to Piston Crown Forged Material (피스톤 크라운용 단강에 인코넬 718 용접재료로 용접된 용접부의 특성 평가)

  • Lee, Sung-Yul;Moon, Kyung-Man;Jeong, Jae-Hyun;Lee, Myeong-Hoon;Baek, Tae-Sil
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.334-340
    • /
    • 2016
  • The combustion chamber of a diesel engine is often exposed to a more serious wear and corrosion environment than other parts of the engine because its temperature increases as a result of using heavy oil of low quality. Therefore, repair and built-up welding methods must be performed on worn or corroded parts of the piston crown, exhaust valve, etc. from an economical point of view. In this study, Inconel 718 filler metal was used in repair welding on the groove of a forged steel specimen for a piston crown, along with built-up welding on the surface of another forged steel specimen. Then, the corrosion characteristics of the weld metal zone for the repair welding and the deposited metal zone for the built-up welding were investigated using electrochemical methods in a 35% H2SO4 solution. The deposited metal zone indicated better corrosion resistance than the weld metal zone, showing a nobler corrosion potential, higher impedance, and smaller corrosion current density. It is considered that metal elements with good corrosion resistance were generally included in the filler metal, and these elements were also greatly involved in the deposited meta by built-up welding, whereas the weld metal consisted of metal elements mixed with both the filler metal and base metal elements because of the molten pool produced by the repair welding. Finally, it is considered that the hardness of the weld metal was increased by the repair welding, whereas the built-up welding improved the corrosion resistance of the deposited metal.