• Title/Summary/Keyword: dielectric resonator

Search Result 296, Processing Time 0.026 seconds

Microstructure and Electrical Properties of ZnO Thin Film for FBAR with Annealing Temperature (FBAR용 ZnO 박막의 열처리 온도변화에 따른 미세조직 및 전기적 특성)

  • Kim, Bong-Seok;Kang, Young-Hun;Cho, Yu-Hyuk;Kim, Eung-Kwon;Lee, Jong-Joo;Kim, Young-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.1 s.284
    • /
    • pp.42-47
    • /
    • 2006
  • In this paper, we prepared high-quality ZnO thin films for application of FBAR (Film Bulk Acoustic Resonator) by using pulse DC magnetron sputtering. To prevent the formation of low dielectric layers between metal and piezoelectric layer, Ru film of 30 nm thickness was used as a buffer layer. In addition we investigated the influence of annealing condition with various temperatures. As the annealing temperature increased, the crystalline orientation with the preference of (002) c-axis and resistance properties improved. The single resonator which was fabricated at $500^{\circ}C$ exhibited the resonance frequency and the return loss 0.99 GHz and 15 dB, respectively. This work demonstrates potential feasibility for the use of thin film Ru buffer layers and the optimization of annealing condition.

Formation of Fine Line and Series Gap Resonator Using the Photoimageable Thick Film Technology (후막 광식각 기술을 이용한 미세라인 및 Series Gap Resonator의 구현)

  • 박성대;이영신;조현민;이우성;박종철
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.3
    • /
    • pp.69-75
    • /
    • 2001
  • Photoimageable thick film technology is a new technology in that the lithography process such as exposure and development is applied to the conventional thick film process. Line resolution of 25 $\mu\textrm{m}$ width and 25 $\mu\textrm{m}$ space could be obtained by laminating green sheet, printing photoimageable Ag paste, exposing the test patterns, developing, and co-firing. In case of using the alumina substrate, 20 $\mu\textrm{m}$ fine line could be also obtained by similar process. Test results showed that exposing power density and developing time were the most important processing parameters for the fine line formation. Microstrip and series gap resonators with well-defined line morphology and good transmission characteristics in high frequency were formed by this new technology, and thereby dielectric constant and loss of test substrate were calculated.

  • PDF

A Study on the Design and Fabrication of X-band Dielectric Resonator Oscillator using Phase Looked Loop (위상고정 회로를 이용한 X-band DRO 설계 및 제작에 관한 연구)

  • 성혁제;손병문;최근석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.5
    • /
    • pp.715-722
    • /
    • 2000
  • In this paper, the PLDRO is designed and implemented for X-band. It is comprised of tunable high Q resonator with a varactor diode for frequency tuning, loop filter and a 1/8 prescaler which up to 10GHz. Also, it is implemented a TCXO and a VCO signal into the phase detector and achieved a highly stable signal source. From the measurement, the designed PLDRO has the output power of 2.5dBm at 8GHz and phase noise of -64.33dBc at 10KHz offset from carrier. Its characteristic is 26 dBc. This PLDRO has much better temperature stability.

  • PDF

Study of Phase Transition of Copper(II)-phthalocyanine using a Near Field Scanning Microwave Microscope (근접장 마이크로파 현미경을 이용한 Copper(II)-phthalocyanine의 Phase Transition 연구)

  • Park, Mie-Hwa;Yoo, Hyun-Jun;Yun, Soon-Il;Lim, Eun-Ju;Lee, Kie-Jin;Cha, Deok-Joon;Lee, Young-San
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.6
    • /
    • pp.641-646
    • /
    • 2004
  • We report the changes of the microwave reflection coefficients S$_{11}$ of copper(II)-phthalocyanine (CuPc) thin films by using a near-field microwave microscope(NSMM) in order to understand the phase transition of CuPc. For a NSMM system, a high-quality microstrip resonator coupled with a dielectric resonator was used. CuPc thin films were prepared on the pre-heated glass substrates using a thermal evaporation method. The reflection coefficients S$_{11}$ of CuPc thin films were changed by the dependence on the substrate pre-heating temperatures. By comparing reflection coefficient S$_{11}$ and crystal structures, we found the phase transition of CuPc thin films from $\alpha$-phase to $\beta$-phase at the substrate heating temperature 200 $^{\circ}C$./TEX>.

A Study on the Design and Implementation of the Oscillator Using a Miniaturized Hairpin Ring Resonator (소형화된 헤어핀 링 공진기를 이용한 발진기 설계 및 제작에 관한 연구)

  • Kim, Jang-Gu;Choi, Byoung-Ha
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.2
    • /
    • pp.122-131
    • /
    • 2008
  • In this paper, an S-band oscillator of the low phase noise property using miniaturized microstrip hairpin shaped ring resonator has been designed and implemented. The TACONIC's RF-35 substrate has a dielectric constant ${\varepsilon}_r$=3.5 a thickness h=20mil a copper thickness t=17 um and loss tangent $tan{\delta}$=0.0025. The designed and implemented 2.45 GHz oscillator shows low phase performance of -100.5 dBc/Hz a 100kHz offset. Output power 20.9 dBm at center frequency 2.45 GHz and harmonic suppression -32 dBc. The circuit was implemented with hybrid technique. But can be fully compatible with the RFIC's, MIC and MMIC due to its entirely planar structure.

  • PDF

Design of CPW-Fed Broadband Antenna Using the CSRR for WLAN Band Notched Characteristic (CSRR을 이용한 WLAN 대역 저지 특성 CPW 급전 광대역 안테나 설계)

  • Kim, Jang-Yeol;Lee, Seung-Woo;Kim, Nam;Oh, Byoung-Cheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.5
    • /
    • pp.528-537
    • /
    • 2011
  • In this paper, a broadband antenna of the CPW structure with a band-notched characteristic is presented. To obtain this characteristic, the complementary split ring resonator(CSRR) is inserted in the ground plane. In addition, the IEEE 802.11a WLAN band(5.15~5.825 GHz) appears in the band-notched characteristic. The proposed antenna dimension is $36{\times}60{\times}1.6\;mm^3$, and it is designed on the FR-4 substrate having a relative dielectric constant of 4.4. The designed antenna shows that the resonant frequency is 2.03~10.78 GHz below the return loss of -10 dB and a VSWR less than 2 was satisfied. As a result, the proposed CSRR has a band-notched characteristic in the range of 4.917~6.017 GHz which the center frequency is about 5.4 GHz band.

Development of Ceramic Filter Using Non Radiative Microstrip Line In Millimeter-Wave (비방사 마이크로 스트립 선로를 이용한 밀리미터 대역의 세라믹 필터 개발)

  • Shin, Cheon-Woo;Kim, Tae-Heon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.6A
    • /
    • pp.648-656
    • /
    • 2007
  • This paper is about band pass filter, using Ceramics in the condition of center frequency 370Hz at milli-wave. The band pass filter is applied to Broadband Convergence Network, representing WLL(Wireless Local Loop) and LMDS(Local Multi-point Distribution Service). Sticking ceramic between strip line on a dielectric material substrate with which conductor's covers upper and basal surface, One will house the exterior by using structural resonance. In this Non Radiative Microstrip Line Filter structure, based upon simulations, generalized the two formulas finding resonant frequency of 1step ceramic resonator and bandwidth of 4step ceramic resonator. Also, As a result of experiment, using Network Analyzer, about created a experiment of structure based on the simulation result of 4-step ceramic resonator, It showed good characteristic of targeted bandwidth, comparing simulated result of 36.58GHz$\sim$37.650GHz with experimented result of 36.6GHz$\sim$37.65GHz.

UWB Bandpass Filter Using Capacitive Coupling with Cross Resonator ("+"자 공진기와 용량성 결합을 이용한 초광대역 대역 통과 여파기)

  • Dong, Thai Hoa;Lee, Jae-Young;Kim, Ihn-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.5
    • /
    • pp.486-493
    • /
    • 2010
  • This article introduces a novel ultra wideband(UWB) bandpass filter(BPF) with sharp roll-off characteristics in stripline structure. The UWB characteristic is basically obtained from capacitive coupled cross resonator. The resonator has ${\lambda}/2$ length. And at the center of the resonator, two stubs are loaded, one is a ${\lambda}/8$ short-circuited stub and the other is a ${\lambda}/8$ open-circuited stub. The two stubs provide two attenuation poles at lower and upper cutoff frequencies. For input and output lines, two identical capacitively coupled lines have been installed to suppress the unwanted signals in the lower and upper stopbands. The filter has been designed for the U.S. UWB band(3.1~10.6 GHz) with two transmission zeros at 2.4 and 11.1 GHz. The filter has been realized with Low Temperature Core-fired Ceramic(LTCC) green tape which has the dielectric constant of 7.8. Measurement results agree well with HFSS simulation results. Insertion loss less than 0.7 dB and return loss better than 14 dB in the pass band have been measured. The group delay in the center frequency is 0.27 ns and the group delay variation within pass band is less than 0.5 ns. The size of the filter is $6{\times}18{\times}0.6\;mm^3$.

A Study on the Design and Fabrication of Phase Locked Dielectric Resonance Oscillator (위상고정 유전체 공진형 발진기의 설계 및 제작에 관한 연구)

  • Seo Gon;Park hang-Hyun;Kim Jang-Gu;Choi Byung-Ha
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.3 s.333
    • /
    • pp.25-32
    • /
    • 2005
  • In this papers, we first, therefore, designed VCO(voltage controlled oscillator) that is composed of the dielectric resonator and the varactor diode, and then designed and fabricated PLDRO(phase locked dielectric resonator oscillator) that is combined with the sampling phase detector and loop filter. The measured results of the fabricated PLDRO at 12.05 [GHz] show the output power is 13.54 [dBm], frequency tuning range approximately +/- 7.5 [MHz], and Power variation over the tuning range less than 0.2 [dB], respectively. The phase noise which effects on bits error rate in digital communication is obtained with -114.5 [dBc/Hz] at 100 [KHz] offset from carrier, and The second harmonic suppression is less than -41.49 [dBc]. These measured results are found to be more improved than those of VCO without adopting PLL, and the phase noise and power variation performance characteristics show the better performances than those of conventional PLL.

Implementation of Voltage Control Dielectric Resonator Oscillator for FMCW Radar (FMCW 레이더용 전압제어 유전체 발진기의 구현)

  • 안용복;박창현;김장구;최병하
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.4
    • /
    • pp.906-911
    • /
    • 2004
  • In this paper, a VCDRO(Voltage Control Dielectric Resonator Oscillator) applied to FMCW(Frequency Modulated Continuous Wave)Radar as stable source is implemented and constructed with a MESFET(Metal-semiconductor Field-Effect Transistor) for low noise, a dielectric resonate. of high frequency selectivity, and high Q varator diode to obtain a good phase noise performance and stable sweep characteristics. The designed circuits is simulated thrash harmonic balance simulation technique to provide the optimum performance. The measured result of a fabricated VCDRO shows that output is 2.22㏈m at 12.05GHz, harmonic suppression -30㏈c, phase noise -130㏈c at 100KHz offset, and sweep range of varator diode $\pm$18.7MHz, respectively. This oscillator will be available to FMCW Radar.