• 제목/요약/키워드: die insert

검색결과 84건 처리시간 0.025초

FTM과 RSM을 이용한 후방 압출 금형 설계 (Design of Backward Extrusion Die by using Flexible Tolerance Method and Response Surface Methodology)

  • 허관도;여홍태;최영
    • 한국정밀공학회지
    • /
    • 제22권1호
    • /
    • pp.167-174
    • /
    • 2005
  • The design for cold extrusion dies is very important, because the die insert is subjected to very high radial and hoop stresses. The design of cold extrusion dies has many constrained conditions. In this paper, the used assumptions are such that the yield strength of each ring is selected according to the allowable tensile or compressive hoop stress in each ring and the maximum allowable inner pressure, when yielding occurs in one ring of the dies, is obtained by the proposed equation. In order to obtain design variables, such as diameter ratios and interferences, using the maximum inner pressure, the flexible tolerance method was used for shrink-fitted thick-walled cylinders. ANSYS APDL was used to perform the repeated analysis of deformation of the dies due to the variation of the design variables. The response surface methodology is utilized to analyze the relationship between the design variables and the maximum radial displacement of the die insert during extrusion. From the results, it is found that outer diameter of the die insert has the largest effect on the minimization of maximum radial displacement at the inner surface of the dies.

인텀샤프트 일체형 유니버셜 파이프 조인트용 다단조금형의 단조공정해석 (Forging Process Analysis of the Multi-forging Die for the Unified Universal Pipe Joint of the Intermediate Shaft)

  • 권혁홍;문관진;송승은
    • 한국생산제조학회지
    • /
    • 제19권1호
    • /
    • pp.33-41
    • /
    • 2010
  • This study was aimed at the design of the dies for the unified pipe joint of the intermediate shaft using the computer simulation to shorten the period of production, on the basis of the process planning which was designed by the field experts. In the computer simulation, 'Deform-3d' and 'eesy-DieOpt' have been used, which are the commercial process analysis and die design program. Through the process analysis, we could know the propriety of the forming process, the inner pressure of the die and the suitable fitting pressure between the insert and the sleeve which was not showing any positive tangential stresses in the insert. Through the simulation of die design, we could know the number of the stress ring, the diameter ratios, the stresses of the die, the shrink fitting tolerance and temperature in the condition of the already determined maximum outer die diameter of the multi-stage former. The validity of the die design using the computer simulation was analyzed by the experiments and the results were satisfactory. As the results of this study, the new and easy die design system for multi-forging has been developed.

연료 압력 조절기용 가이드 밸브의 냉간 단조 개발에 관한 연구 (A Study on the Cold Forging Development of Guide Valve for the Fuel Pressure Regulator)

  • 송승은;권혁홍
    • 한국생산제조학회지
    • /
    • 제21권2호
    • /
    • pp.331-336
    • /
    • 2012
  • This study was aimed at the design of the dies for the guide valve for the fuel pressure regulator using the computer simulation to shorten the period of production, on the basis of the process planning which was designed by the field experts. In the computer simulation, 'Deform-3d' and 'Eesy-DieOpt' have been used, which are the commercial process analysis and die design program. Through the process analysis, we could know the propriety of the forming process, the inner pressure of the die and the suitable fitting pressure between the insert and the sleeve which was not showing any positive tangential stresses in the insert. Through the simulation of die design, we could know the number of the stress ring, the diameter ratios, the stresses of the die, the shrink fitting tolerance and temperature in the condition of the already determined maximum outer die diameter of the multi-stage former. The validity of the die design using the computer simulation was analyzed by the experiments and the results were satisfactory. As the results of this study, the new and easy die design system for multi-forging has been developed.

정밀냉간단조에 의한 엔진오일 누수방지용 자동차부품 개발 (Development of the Automobile Part for the Engine Oil Leakage Prevention by the Precise Cold Forging)

  • 권혁홍;이봉규
    • 소성∙가공
    • /
    • 제14권8호통권80호
    • /
    • pp.675-680
    • /
    • 2005
  • This study was aimed at the design of the dies for the automobile part for the engine oil leakage prevention using the computer simulation to shorten the period of production, on the basis of the process planning which was designed by the field experts. In the computer simulation,'eesy-2-form' of 2D FEM simulation package and 'eesy-DieOpt' have been used, which are the commercial process analysis and die design program. Through the simulation of 'eesy-2-form', we could know the propriety of the forming process, the inner pressure of the die and the suitable fitting pressure between the insert and the sleeve which was not showing any positive tangential stresses in the insert. Through the simulation of 'eesy-DieOpt', we could know the number of the stress ring, the diameter ratios, the stresses of the die, the shrink fitting tolerance and temperature in the condition of the already determined maximum outer die diameter of the multi-stage former. The validity of the die design using the computer simulation was analyzed by the experiments and the results were satisfactory. As the results of this study, the new and easy die design system for cold forging has been developed.

자동차용 일체형 유니버셜 샤프트 조인트의 냉간단조 공정 유한요소해석 (Finite Element Analysis on the Cold Forging Process of the Unified Universal Shaft Joint for the Automobile)

  • 권혁홍;송승은;김오승
    • 한국생산제조학회지
    • /
    • 제20권5호
    • /
    • pp.582-588
    • /
    • 2011
  • This study was aimed at the design of the dies for the unified shaft joint using the computer simulation to shorten the period of production, on the basis of the process planning which was designed by the field experts. In the computer simulation, 'Deform-3d' and 'Eesy-DieOpt' have been used, which are the commercial process analysis and die design program. Through the process analysis, we could know the propriety of the forming process, the inner pressure of the die and the suitable fitting pressure between the insert and the sleeve which was not showing any positive tangential stresses in the insert. Through the simulation of die design, we could know the number of the stress ring, the diameter ratios, the stresses of the die, the shrink fitting tolerance and temperature in the condition of the already determined maximum outer die diameter of the multi-stage former. The validity of the die design using the computer simulation was analyzed by the experiments and the results were satisfactory. As the results of this study, the new and easy die design system for multi-forging has been developed.

냉간 후방 압출 금형설계에 FTM과 RSM의 활용 (Application of FTM and RSM for the Design of Cold Backward Extrusion Dies)

  • 여홍태;최영;송요선;허관도
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 제4회 압출 및 인발가공 심포지엄
    • /
    • pp.99-106
    • /
    • 2001
  • The design for cold extrusion dies is very important, because the die insert is subjected to very high radial and hoop stresses. The design of cold extrusion dies has many constrained conditions. In this paper, the used assumptions are such that the yield strength of each ring is selected according to the allowable tensile or compressive hoop stress in each ring and the maximum allowable inner pressure, when yielding occurs in one ring of the dies, is obtained by the proposed equation. In order to obtain design variables, such as diameter ratios and interferences, using the maximum inner pressure, the flexible tolerance method was used for shrink-fitted thick-walled cylinders. ANSYS APDL was used to perform the repeated analysis of deformation of the dies due to the variation of the design variables. The response surface methodology is utilized to analyze the relationship between the design variables and the maximum radial displacement of the die insert during extrusion. From the results, it is found that outer diameter of the die Insert has the largest effect on the minimization of maximum radial displacement at the inner surface of the dies.

  • PDF

Hexagonal 인서트용 열간압출 금형설계 (Design of Hot Extrusion Dies for Hexagonal Insert)

  • 권혁홍;이정로
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.72-77
    • /
    • 2001
  • The use of hexagonal ceramic inserts for copper extrusion dies offers significant technical and economic advantages over other forms of manufacture. In this paper the data on the loading of the tools is determined from a commercial FEM package as the contact stress distribution on the die-workpiece interface and as temperature distributions in the die. This data can be processed as load input data for a finite element die-stress analysis. Process simulation and stress analysis are thus combined during the design, and a data exchange program has been developed that enables optimal design of the dies taking into account the elastic deflections generated in shrink fitting the die inserts and that caused by the stresses generated in the process. The stress analysis of the dies is used to determine the stress conditions on the ceramic insert by considering contact and interference effects under both mechanical and thermal loads.

  • PDF

Warm Compaction: FEM Analysis of Stress and Deformation States of Compacting Dies with Rectangular Profile of Various Aspect Ratio

  • Armentani, E.;Bocchini, G. F.;Gricri, G.;Esposito, R.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.191-192
    • /
    • 2006
  • The deformation under radial pressure of rectangular dies for metal powder compaction has been investigated by FEM. The explored variables have been: aspect ratio of die profile, ratio between diagonal of the profile and die height, insert and ring thickness, radius at die corners, interference, different insert materials, i. e. conventional HSS, HSS from powders, cemented carbide (10% Co). The analyses have ascertained the unwanted appearance of tensile normal stress on brittle materials, also "at rest", and even some dramatic changes of stress patterns as the die height increases with respect to the rectangular profile dimensions. Different materials behave differently, mainly due to difference of thermal expansion coefficients. Profile changes occur when the dies are heated up to the temperature required for warm compaction. The deformation patterns depend on compaction temperature and thermal expansion coefficients.

  • PDF

Development of The Multi Forming Type Ultra Precision Die for Sheet Metal ( PartII) - Die Design and Die Making -

  • Sim, Sung-Bo;Jang, Chan-Ho;Sung, Yul-Min
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 추계학술대회 논문집
    • /
    • pp.287-291
    • /
    • 2001
  • In this study, we designed and constructed a multi-forming progressive die with a bending, embossing on the multi-stage and performed through the try out. Out of the characteristics of this paper that nothing might be ever seen before such as this type of research method on the all of processes of thin and high precision production part.

  • PDF