• Title/Summary/Keyword: die geometry

Search Result 183, Processing Time 0.029 seconds

Development of Prototyping and Die/Mold Manufacturing Technology using Rapid Prototyping(SLA) (쾌속 3차원 조형법을 이용한 시작기술 및 시작금형)

  • Park, K.;Lee, S.C.;Jung, J.H.;Yang, D.Y.;Yoon, J.R.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1582-1589
    • /
    • 1996
  • Rapid prototyping is a new prototyping technology which produces three dimensional part models directrly from CAD data and has been extensively applied to various manufacturing processes. There are many types of rapid prototyping systems due to their building principles and materials. In this work, Stereolithography Appaaratus(SLA) which is the most widely-used rapid prototyping system is introduced to achieve die/mold technology innovation. For the purpose, the prototyping technology using SLA is developed such that patterns of which shapes are quite complicated are successfully produced with high accuracy. Using these patterns, prototype die/molds are efficientrly manufactured; a turbocharger rotor, a fan and a wheel patterns, prototype die/molds are efficienterly manufactured ; a turbochager rotor, a fan and a wheel pattern are made, and the molds of the investment casting, the injection molding and the die casting are manufactured respectively. The casting products are produced using these molds and it turns out that these methods are quitre effective for manufacturing products of complicated geometry from the viewpoint of efficiency and productivity.

A Progressive Automated-Process Planning and Die Design and Working System for Blanking or Piercing and Bending of Sheet Metal Product (박판제품의 블랭킹 및 피어싱과 굽힘 가공을 위한 순차이송용 공정 및 금형 설계와 가공자동화 시스템)

  • Choe, Jae-Chan;Kim, Chul
    • Transactions of Materials Processing
    • /
    • v.7 no.3
    • /
    • pp.246-259
    • /
    • 1998
  • This paper describes a research work of developing a computer-aided design and manufacturing of irregular shaped sheet metal product for blanking or piercing and bending operations. An approach to the system is based on the knowledge-based rules. Knowledge for the system is formulated from plasticity theories experimental results and the empirical knowledge of field experts, This system has been written in AutoLISp on the AutoCAD and in customer tool kit on the SmartCAM with a personal computer and is composed of nine modules which are input and shape treatment, flat pattern-layout, pro-processor module. Based on the knowledge-based rules, the system is designed by considering several factors, such as material and thickness of product complexities of blank geometry and punch profile sheet metal to give flat pattern and automatically account for the adjustment of bending allowances to match tooling requirements by checking dimensions and generating NC data automatically according to drawings of die-layout module. Results carried out in each module will provide efficiencies to the designer and the manufacturer of blanking or piercing and bending die in this field.

  • PDF

Development of an Automated Progressive Design System for Manufacturing Product with Multi Processes, Piercing, Bending, and Deep Drawing (복합공정(피어싱, 벤딩, 디프드로잉)을 갖는 제품 제조를 위한 프로그레시브 설계 자동화 시스템 개발)

  • Hwang, Beom-Cheol;Kim, Chul;Bae, Won-Byong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.55-64
    • /
    • 2008
  • This paper describes a research work of developing an automated progressive design system for manufacturing the product with multi processes such as piercing, bending, and deep drawing. An approach to the system for progressive working is based on the knowledge-based rules. Knowledge for the system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. The system consists of three main modules, which are shape treatment, strip layout, and die layout modules. Based on knowledge-based rules, the system is designed considering several factors, such as material and thickness of a product, piercing, bending and deep drawing sequence, and the complexities of the blank geometry and punch profiles. It generates the strip layout drawing for an automobile product. Die design for each process is carried out through the die layout module from the results of the strip layout module. Results obtained using the modules enable the designers for manufacturing products with multi processes to be more efficient in this field.

A CAD/CAM System for Blanking or Piercing of Irregular Shaped-Sheet Metal Products (불규칙형상 박판제품의 블랭킹 및 피어싱용 CAD/CAM 시스템)

  • 최재찬;김철;박상봉
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.8
    • /
    • pp.174-182
    • /
    • 1998
  • This paper describes a research work of developing a computer-aided design and machining of irregular shaped-sheet metal product for blanking or piercing operation. An approach to the CAD/CAM system is based on the knowledge-based rules. Knowledge for the CAD/CAM system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. The system has been written in AutoLISP on the AutoCAD and in customer tool kit on the SmartCAM with a personal computer and is composed of nine modules, which are input and shape treatment, flat pattern-layout, production feasibility check, blank-layout, strip-layout, die-layout, data conversion, modelling, and post-processor module. Based on knowledge-based rules, the system is designed by considering several factors, such as material and thickness of product, complexities of blank geometry and punch profile, diameter and material of a wire, and availability of press. This system is capable of generating NC data automatically according to drawings of die-layout module. Results which are carried out in each module will provide efficiencies to the designer and the manufacturer of blanking or piercing die in this field.

  • PDF

Micro-forming Ability of Ultrafine-Grained Magnesium Alloy Prepared by High-ratio Differential Speed Rolling (강소성압연법으로 제조된 초미세립 마그네슘 재료의 마이크로 성형능)

  • Yoo, Seong Jin;Kim, Woo Jin
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.104-111
    • /
    • 2011
  • An ultrafine grained Mg-9Al-1Zn magnesium alloy with the mean grain size less than $1{\mu}m$ was produced by using high-ratio differential speed rolling. The processed alloy exhibited excellent superplasticity at relatively low temperatures. The micro-forming tests were carried out using a micro-forging apparatus with micro V-grooved shaped dies made of silicon and the micro-formability was evaluated by means of micro-formability index, $R_f$ ($=A_f/A_g$, $A_f$: formed and inflowed area into the V-groove, $A_g$: area of the V-groove). The $R_f$ value increased with temperature up to $280^{\circ}C$ and then decreased beyond $300^{\circ}C$. The decrease of the $R_f$ value at $300^{\circ}C$ was attributed to the accelerated grain coarsening. Increasing the micro-forging pressure increased the $R_f$ values. At a given die geometry, die filling ability decreased as the die position moved away from the die center to the end. FEM simulation predicted this behavior and a method of improving this problem was proposed.

A Study on the Dieless Wire Drawing Using Microwave (마이크로웨이브를 이용한 Dieless Wire Drawing 에 대한 연구)

  • Huh You;Kim S.H.;Kim J.S.;Kim I.S.;Paik Y.N.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.942-945
    • /
    • 2005
  • Micron-sized metal wires are widely used in industries such as filtration, catalyst and composite materials, etc. In the wire drawing process, the die that is used conventionally is an effective and, at the same time, sensitive component. However, a typical array of the dies has caused many problems in the wire drawing process, e.g., large frictional force on the interface between wire and the resulting high heat generation, precise adjustment of the dies, extended cooling system, die abrasion, etc.. Because of these problems, there have been many works that are aiming at improving the efficiency of wire drawing process by analyzing the die geometry and by applying advanced die material to prolong the die life or even at developing a dieless wire drawing system. This paper is dealing with developing a new wire drawing system that is applicable to reduce the wire drawing steps with high draw ratio. The new wire drawing system does not use the dies, but use the self-induced heater that works on the basis of the resonant phenomenon of wire material. The electromagnetic wave is the heating source. The results of the study on the diameter reduction and microwave flow analysis show that the heating effectiveness of the wire is influenced by the energy distribution in the microwave propagation chamber. We can obtain diameter-reduced wires by using microwave in the dieless drawing process. Microwave as a heating source is capable of producing wires without applying dies in wire drawing process.

  • PDF

Coater Die Design and Coating Quality Evaluation in the Machine Direction of Slot Coating Through Computer Simulation (컴퓨터 해석을 통한 Slot 코팅공정에서 운전방향의 코팅품질 평가 및 다이 설계)

  • Kim, T.H.;Lee, D.Y.;Sung, D.J.;Lyu, M.Y.
    • Elastomers and Composites
    • /
    • v.48 no.4
    • /
    • pp.282-287
    • /
    • 2013
  • Slot coating has been widely spread in photo resist coating on glass for flat display monitor. High quality of coating is required as high quality of image in display is needed. Coating quality in the slot coating is divided into nozzle direction quality and machine direction quality. Nozzle direction quality is related to flow uniformity inside the die whereas machine direction quality is related to die lip design and operational conditions. In this study coating uniformity in the machine direction of slot coating has been investigated through computer simulation. Die lip angle and die lip length were considered as outside die geometry and coating speed was considered as operational condition. Coating behavior has been analyzed and coating quality has been evaluated through computer simulation. Coating thickness decreased and coating uniformity increased as coating speed increased. However, the stability of meniscus formation was reduced and subsequently coating stability was reduced as coating speed increased. Coating thickness deviation decreased as die lip angle increased in down stream die. Coating thickness decreased and time to reaching steady state increased as increased die lip length in down stream die.

Computer-Aided Process Planning System of Cold Forging and its Verification by F.E. Simulation (냉간단조 공정설계 시스템과 유한요소해석에 의한 검증)

  • Lee, E.H.;Kim, D.J.;Park, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.43-52
    • /
    • 1996
  • This paper describes interactive computer procedures for design the forming sequences in cold forging. This system is implemented on the personal computer and its environment is a commercial AutoCAD system. The programming language. AutoLISP, was used for the configuration of the system. Since the process of metal forming can be considered as a transformation of geometry, treatment of the geometry of the part is a key in process planning. To recognize the part section geometry, the section entity representation, the section coordinate-redius representation and the section primitive geometru were adopted. This system includes six major modules such as input module, forging design module, forming sequence design module, die design module, FEM verification module and output module which are used independently or in all. The sequence drawing wigh all dimensions, which includes the dimensional tolerances and the proper sequence of operations, can generate under the environment of AutoCAD. The acceptable forming sequences can be verified further, using the FE simulation.

  • PDF

A Study on Elliptical Cup Drawing of YOKE Products for Automobile (자동차 YOKE 제품의 타원용기 성형에 관한 연구)

  • Park, Dong-Hwan;Bae, Won-Rak;Park, Sang-Bong;Gang, Seong-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.182-192
    • /
    • 2001
  • During the deep drawing process an initially flat blank is clamped between the die and the blank holder after which the punch moves down to deform the clamped blank into the desired shape. In general, sheet metal forming may involve stretching, drawing, bending or various combinations of those basic modes of deformation. The deformation problems of sheet metal working involve non-linearity in geometry and material. In this work, The punch load and thickness strain of electro-galvanized sheet steel (SECD) for elliptical deep drawing are examined under the various process conditions including, punch shape radius, die shape radius. The changes of punch load and thickness strain distribution of the deformed elliptical cup are affected by the size of each die shape radius.

  • PDF

Hydroforming Simulation of High-strength Steel Cross-members in an Automotive Rear Subframe

  • Kim, Kee-Joo;Sung, Chang-Won;Baik, Young-Nam;Lee, Yong-Heon;Bae, Dae-Sung;Kim, Keun-Hwan;Won, Si-Tae
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.55-58
    • /
    • 2008
  • Hydroforming is a forming technology in which a steel tube is set in a die and formed to fit a specified shape by applying hydraulic pressure from inside the tube while also applying force in the tube axial direction (axial feed). In present study, the entire design process chain for an automotive cross-member was simulated and developed using hydroforming technology on high-strength steel. The part design stage required a feasibility study. The process was designed using computer-aided design techniques to confirm the actual hydroformability of the part in detail. The possibility of using hydroformable cross-member parts was examined using cross-sectional analyses, which were essential to ensure the formability of the tube material for each forming step, including pre-bending and hydroforming. The die design stage included all the components of a prototyping tool. Press interference was investigated in terms of geometry and thinning.