• Title/Summary/Keyword: dicinnamoylmethane

Search Result 1, Processing Time 0.015 seconds

Production of Curcuminoids in Engineered Escherichia coli

  • Kim, Eun Ji;Cha, Mi Na;Kim, Bong-Gyu;Ahn, Joong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.5
    • /
    • pp.975-982
    • /
    • 2017
  • Curcumin, a hydrophobic polyphenol derived from the rhizome of the herb Curcuma longa, possesses diverse pharmacological properties, including anti-inflammatory, antioxidant, antiproliferative, and antiangiogenic activities. Two curcuminoids (dicinnamoylmethane and bisdemethoxycurcumin) were synthesized from glucose in Escherichia coli. PAL (phenylalanine ammonia lyase) or TAL (tyrosine ammonia lyase), along with Os4CL (p-coumaroyl-CoA ligase) and CUS (curcumin synthase) genes, were introduced into E. coli, and each strain produced dicinnamoylmethane or bisdemethoxycurcumin, respectively. In order to increase the production of curcuminoids in E. coli, the shikimic acid biosynthesis pathway, which increases the substrates for curcuminoid biosynthesis, was engineered. Using the engineered strains, the production of bisdemethoxycurcumin increased from 0.32 to 4.63 mg/l, and that of dicinnamoylmethane from 1.24 to 6.95 mg/l.