Production of Curcuminoids in Engineered Escherichia coli |
Kim, Eun Ji
(Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
Cha, Mi Na (Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) Kim, Bong-Gyu (Department of Forest Resources, Gyeongnam National University of Science and Technology) Ahn, Joong-Hoon (Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) |
1 | Lee YJ, Jeon Y, Lee JS, Kim BG, Lee CH, Ahn J-H. 2007. Enzymatic synthesis of phenolic CoAs using 4-coumarate: coenzyme A ligase (4CL) from rice. Bull. Korean Chem. Soc. 28: 365-366. DOI |
2 | Kim S-K, Kim DH, Kim BG, Jeon YM, Hong BS, Ahn J-H. 2009. Cloning and characterization of the UDP glucose/ galactose epimerases of Oryza sativa. J. Korean Soc. Appl. Biol. Chem. 52: 315-320. DOI |
3 | Kim MK, Jeong W , Kang J , Chong Y. 2011. Significant enhancement in radical-scavenging activity of curcuminoids conferred by acetoxy substituent at the central methylene carbon. Bioorg. Med. Chem. 19: 3793-3800. DOI |
4 | Cochrane FC, Davin LB, Lewis NG. 2004. The Arabidopsis phenylalanine ammonia lyase gene family: kinetic characterization of the four PAL isoforms. Phytochemistry 65: 1157-1564. |
5 | Berner M, Krug D, Gihlmaier C, Vente A, Muller R, Bechthold A. 2006. Genes and enzymes involved in caffeic acid biosynthesis in the actinomycete Saccharothrix espanaensis. J. Bacteriol. 188: 2666-2673. DOI |
6 | Santos CNS, Koffas M, Stephanopoulos G. 2011. Optimization of a heterologous pathway for the production of flavonoids from glucose. Metab. Eng. 13: 392-400. DOI |
7 | Sariaslani FS. 2007. Development of a combined biological and chemical process for production of industrial aromatics from renewable resources. Annu. Rev. Microbiol. 61: 51-69. DOI |
8 | Lutke-Eversloh T, Stephanopoulos G. 2007. L-Tyrosine production by deregulated strains of Escherichia coli. Appl. Microbiol. Biotechnol. 75: 103-110. DOI |
9 | Patnaik R, Liao JC. 1994. Engineering of Escherichia coli central metabolism for aromatic metabolite production with near theoretical yield. Appl. Environ. Microbiol. 60: 3903-3908. |
10 | Tonetti DA, Zhang Y, Zhao H, Lim SB, Constantinou AI. 2007. The effect of the phytoestrogens genistein, daidzein, and equol on the growth of tamoxifen-resistant . Nutr. Cancer 58: 1222-1229. |
11 | Sharma RA, G escher A J, S teward WP. 2005. Curcumin: the story so far. Eur. J. Cancer 41: 1955-1968. DOI |
12 | Siwak DR, Shishodia S, Aggarwal BB, Kurzrock R. 2005. Curcumin-induced antiproliferative and proapoptotic effects in melanoma cells are associated with suppression of kinase and nuclear factor activity and are independent of the B-Raf/mitogen-activated/extracellular signal-regulated protein kinase pathway and the Akt pathway. Cancer 104: 879-890. DOI |
13 | Aggarwal BB, Sung B. 2008. Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharm. Sci. 30: 85-94. |
14 | Wilken R, Veena MS, Wang MB, Srivatsan ES. 2011. Curcumin: a review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer 10: 12. DOI |
15 | Jayaprakasha GK, Rao LJ, Sakariah KK. 2006. Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food Chem. 98: 720-724. DOI |
16 | Yoysungnoen P, Wirachwong P, Changtam C, Suksamrarn A, Patumraj S. 2008. Anti-cancer and anti-angiogenic effects of curcumin and tetrahydrocurcumin on implanted hepatocellular carcinoma in nude mice. World J. Gastroenterol. 14: 2003-2009. DOI |
17 | Mishra S, Palanivelu K. 2008. The effect of curcumin (turmeric) on Alzheimer's disease: an overview. Ann. Indian Acad. Neurol. 11: 13-19. DOI |
18 | de Lemos ML. 2001. Effects of soy phytoestrogens genistein and daidzein on breast cancer growth. Ann. Pharmacother. 35: 11118-11121. |
19 | Venigalla M, Gyengesi E, Münch G. 2015. Curcumin and apigenin - novel and promising therapeutics against chronic neuroinflammation in Alzheimer's disease. Neural Regen. Res. 10: 1181-1185. DOI |
20 | Rodrigues JL, Araújo RG, Prather KLJ, Kluskens LD, Rodrigues LR. 2015. Production of curcuminoids from tyrosine by a metabolically engineered Escherichia coli using caffeic acid as an intermediate. Biotechnol. J. 10: 599-609. DOI |
21 | Vyas A, Dandawate P, Padhye S, Ahmad A, Sarkar F. 2013. Perspectives on new synthetic curcumin analogs and their potential anticancer properties. Curr. Pharm. Des. 19: 2047- 2069. |
22 | Youssef KM, El-Sherbeny MA, El-Shafie FS, Farag HA, Al- Deeb OA, Awadalla SA. 2004. Synthesis of curcumin analogues as potential antioxidant, cancer chemopreventive agents. Arch. Pharm. 337: 42-54. DOI |
23 | Austin MB, Noel JP. 2003. The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep. 20: 79-110. DOI |
24 | Flores-Sanchez IJ, Verpoorte R. 2009. Plant polyketide synthase: a fascinating group of enzymes. Plant Physiol. Biochem. 47: 167-174. DOI |
25 | Katsuyama Y, Matsuzawa M, Funa N, Horinouchi S. 2007. In vitro synthesis of curcuminoids by type III polyketide synthase from Oryza sativa. J. Biol. Chem. 282: 37702-37709. DOI |
26 | Katsuyama Y, Kita T, Funa N, Horinouchi S. 2009. Curcuminoid biosynthesis by two type III polyketide synthases in the herb Curcuma longa. J. Biol. Chem. 284: 11160-11170. DOI |
27 | Wang J, Guleria S, Koffas MA, Yan Y. 2016. Microbial production of value-added nutraceuticals. Curr. Opin. Biotechnol. 37: 97-104. DOI |
28 | An DG, Cha MN, Nadarajan SP, Kim BG, Ahn J-H. 2016. Bacterial synthesis of four hydroxycinnamic acids. Appl. Biol. Chem. 59: 173-179. |
29 | Kim MJ, Kim B-G, Ahn J-H. 2013. Biosynthesis of bioactive O-methylated flavonoids in Escherichia coli. Appl. Microbiol. Biotechnol. 97: 7195-7204. DOI |
30 | Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, et al. 2003. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425: 191-196. DOI |