Browse > Article
http://dx.doi.org/10.4014/jmb.1701.01030

Production of Curcuminoids in Engineered Escherichia coli  

Kim, Eun Ji (Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
Cha, Mi Na (Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
Kim, Bong-Gyu (Department of Forest Resources, Gyeongnam National University of Science and Technology)
Ahn, Joong-Hoon (Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.5, 2017 , pp. 975-982 More about this Journal
Abstract
Curcumin, a hydrophobic polyphenol derived from the rhizome of the herb Curcuma longa, possesses diverse pharmacological properties, including anti-inflammatory, antioxidant, antiproliferative, and antiangiogenic activities. Two curcuminoids (dicinnamoylmethane and bisdemethoxycurcumin) were synthesized from glucose in Escherichia coli. PAL (phenylalanine ammonia lyase) or TAL (tyrosine ammonia lyase), along with Os4CL (p-coumaroyl-CoA ligase) and CUS (curcumin synthase) genes, were introduced into E. coli, and each strain produced dicinnamoylmethane or bisdemethoxycurcumin, respectively. In order to increase the production of curcuminoids in E. coli, the shikimic acid biosynthesis pathway, which increases the substrates for curcuminoid biosynthesis, was engineered. Using the engineered strains, the production of bisdemethoxycurcumin increased from 0.32 to 4.63 mg/l, and that of dicinnamoylmethane from 1.24 to 6.95 mg/l.
Keywords
Bisdemethoxycurcumin; dicinnamoylmethane; metabolic engineering;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lee YJ, Jeon Y, Lee JS, Kim BG, Lee CH, Ahn J-H. 2007. Enzymatic synthesis of phenolic CoAs using 4-coumarate: coenzyme A ligase (4CL) from rice. Bull. Korean Chem. Soc. 28: 365-366.   DOI
2 Kim S-K, Kim DH, Kim BG, Jeon YM, Hong BS, Ahn J-H. 2009. Cloning and characterization of the UDP glucose/ galactose epimerases of Oryza sativa. J. Korean Soc. Appl. Biol. Chem. 52: 315-320.   DOI
3 Kim MK, Jeong W , Kang J , Chong Y. 2011. Significant enhancement in radical-scavenging activity of curcuminoids conferred by acetoxy substituent at the central methylene carbon. Bioorg. Med. Chem. 19: 3793-3800.   DOI
4 Cochrane FC, Davin LB, Lewis NG. 2004. The Arabidopsis phenylalanine ammonia lyase gene family: kinetic characterization of the four PAL isoforms. Phytochemistry 65: 1157-1564.
5 Berner M, Krug D, Gihlmaier C, Vente A, Muller R, Bechthold A. 2006. Genes and enzymes involved in caffeic acid biosynthesis in the actinomycete Saccharothrix espanaensis. J. Bacteriol. 188: 2666-2673.   DOI
6 Santos CNS, Koffas M, Stephanopoulos G. 2011. Optimization of a heterologous pathway for the production of flavonoids from glucose. Metab. Eng. 13: 392-400.   DOI
7 Sariaslani FS. 2007. Development of a combined biological and chemical process for production of industrial aromatics from renewable resources. Annu. Rev. Microbiol. 61: 51-69.   DOI
8 Lutke-Eversloh T, Stephanopoulos G. 2007. L-Tyrosine production by deregulated strains of Escherichia coli. Appl. Microbiol. Biotechnol. 75: 103-110.   DOI
9 Patnaik R, Liao JC. 1994. Engineering of Escherichia coli central metabolism for aromatic metabolite production with near theoretical yield. Appl. Environ. Microbiol. 60: 3903-3908.
10 Tonetti DA, Zhang Y, Zhao H, Lim SB, Constantinou AI. 2007. The effect of the phytoestrogens genistein, daidzein, and equol on the growth of tamoxifen-resistant $T47D/PKC{\alpha}$. Nutr. Cancer 58: 1222-1229.
11 Sharma RA, G escher A J, S teward WP. 2005. Curcumin: the story so far. Eur. J. Cancer 41: 1955-1968.   DOI
12 Siwak DR, Shishodia S, Aggarwal BB, Kurzrock R. 2005. Curcumin-induced antiproliferative and proapoptotic effects in melanoma cells are associated with suppression of $I{\kappa}B$ kinase and nuclear factor ${\kappa}B$ activity and are independent of the B-Raf/mitogen-activated/extracellular signal-regulated protein kinase pathway and the Akt pathway. Cancer 104: 879-890.   DOI
13 Aggarwal BB, Sung B. 2008. Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharm. Sci. 30: 85-94.
14 Wilken R, Veena MS, Wang MB, Srivatsan ES. 2011. Curcumin: a review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer 10: 12.   DOI
15 Jayaprakasha GK, Rao LJ, Sakariah KK. 2006. Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food Chem. 98: 720-724.   DOI
16 Yoysungnoen P, Wirachwong P, Changtam C, Suksamrarn A, Patumraj S. 2008. Anti-cancer and anti-angiogenic effects of curcumin and tetrahydrocurcumin on implanted hepatocellular carcinoma in nude mice. World J. Gastroenterol. 14: 2003-2009.   DOI
17 Mishra S, Palanivelu K. 2008. The effect of curcumin (turmeric) on Alzheimer's disease: an overview. Ann. Indian Acad. Neurol. 11: 13-19.   DOI
18 de Lemos ML. 2001. Effects of soy phytoestrogens genistein and daidzein on breast cancer growth. Ann. Pharmacother. 35: 11118-11121.
19 Venigalla M, Gyengesi E, Münch G. 2015. Curcumin and apigenin - novel and promising therapeutics against chronic neuroinflammation in Alzheimer's disease. Neural Regen. Res. 10: 1181-1185.   DOI
20 Rodrigues JL, Araújo RG, Prather KLJ, Kluskens LD, Rodrigues LR. 2015. Production of curcuminoids from tyrosine by a metabolically engineered Escherichia coli using caffeic acid as an intermediate. Biotechnol. J. 10: 599-609.   DOI
21 Vyas A, Dandawate P, Padhye S, Ahmad A, Sarkar F. 2013. Perspectives on new synthetic curcumin analogs and their potential anticancer properties. Curr. Pharm. Des. 19: 2047- 2069.
22 Youssef KM, El-Sherbeny MA, El-Shafie FS, Farag HA, Al- Deeb OA, Awadalla SA. 2004. Synthesis of curcumin analogues as potential antioxidant, cancer chemopreventive agents. Arch. Pharm. 337: 42-54.   DOI
23 Austin MB, Noel JP. 2003. The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep. 20: 79-110.   DOI
24 Flores-Sanchez IJ, Verpoorte R. 2009. Plant polyketide synthase: a fascinating group of enzymes. Plant Physiol. Biochem. 47: 167-174.   DOI
25 Katsuyama Y, Matsuzawa M, Funa N, Horinouchi S. 2007. In vitro synthesis of curcuminoids by type III polyketide synthase from Oryza sativa. J. Biol. Chem. 282: 37702-37709.   DOI
26 Katsuyama Y, Kita T, Funa N, Horinouchi S. 2009. Curcuminoid biosynthesis by two type III polyketide synthases in the herb Curcuma longa. J. Biol. Chem. 284: 11160-11170.   DOI
27 Wang J, Guleria S, Koffas MA, Yan Y. 2016. Microbial production of value-added nutraceuticals. Curr. Opin. Biotechnol. 37: 97-104.   DOI
28 An DG, Cha MN, Nadarajan SP, Kim BG, Ahn J-H. 2016. Bacterial synthesis of four hydroxycinnamic acids. Appl. Biol. Chem. 59: 173-179.
29 Kim MJ, Kim B-G, Ahn J-H. 2013. Biosynthesis of bioactive O-methylated flavonoids in Escherichia coli. Appl. Microbiol. Biotechnol. 97: 7195-7204.   DOI
30 Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, et al. 2003. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425: 191-196.   DOI