• Title/Summary/Keyword: diamond thin film

Search Result 235, Processing Time 0.031 seconds

Synthesis of Diamond Thin Film on WC-Co by RF PACVD (RF PACVD에 의한 초경합금상에 다이아몬드 박막의 합성)

  • Kim, Dae-Il;Lee, Sang-Hee;Park, Gu-Bum;Park, Sang-Hyun;Lee, Yong-Geun;Kim, Bo-Youl;Kim, Young-Bong;Lee, Duck-Chool
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.11
    • /
    • pp.596-602
    • /
    • 2000
  • Diamond thin films were synthesized on WC-Co substrate at various experimental parameters using 13.56MHz RF PACVD)radio frequency plasma-assisted chemical vapor deposition). In order to increased the nucleation density, the WC-Co substrate was polished with 3${\mu}m$ diamond paste. And the WC-Co substrate was preatreated in $HNO_3\;:\;H_2O$ = 1:1 and $O_2$ plasma. In $H_2-CH_4$ gas mixture, the crystallinity of thin film increased with decreasing $CH_4$ concentration at 800W discharge power and 20torr reaction pressure. In $H_2-CH_4-O_2$ gas mixture, the crystallinity of thin film increased with increasing $O_2$ concentration at 800W discharge power, 200torr reaction pressure and 4% $CH_4$ concentration.

  • PDF

Effects of Pretreatment Condition and Substrate Bias on the Characteristics of MPECVD Diamond Thin Films (전처리조건과 기판Bias가 MPECVD 다이아몬드 박막의 특성에 미치는 영향)

  • 최지환;박정일;박광자;이은아;장감용;박종완
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.4
    • /
    • pp.225-235
    • /
    • 1995
  • To investigate the effects of pretreatment and substrate bias on the characteristics of the diamond thin films, the thin films were deposited on the p-type Si(100) wafer by MPECVD using mixtures of $H_2$, $CH_4$, and $O_2$ gases. Deposition was carried out at the substrate temperature of $900^{\circ}C$ and at the pressure of 40torr. The effect of the pretreatment on the film formation was the examined by using SiC and diamond powders as abrasive powders. Furthermore, the substrate bias effect on the formation of the diamond film was also examined. The highest nucleation density was observed for the pretreatment with 40~60$\mu\textrm{m}$ size of diamond powders and a negative bias potential(-50V). Many defects and(111) twins in the diamond films were observed.

  • PDF

XPS Characterization and Morphology of MgO Thin Films grown on Single-Crystalline Diamond (100)

  • Lee, S.M.;Ito, T.;Murakami, H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.19-27
    • /
    • 2003
  • Morphology and composition of MgO films grown on single-crystalline diamond (100) have been studied. MgO thin films were deposited in the substrate temperature range from room temperature (RT) to 723K by means of electron beam evaporation using MgO powder source. Atomic force microscopy images indicated that the film grown at RT without $O_2$ supply was relatively uniform and flat whereas that deposited in oxygen ambient yielded higher growth rates and rough surface morphologies. X-ray photoelectron spectroscopy analyses demonstrate that the MgO film deposited at RT without $O_2$ has the closest composition to the stoichiometric MgO, and that a thin contaminant layer composed mainly of magnesium peroxide (before etching) or hydroxide (after etching) was unintentionally formed on the film surface, respectively. These results will be discussed in relation to the interaction among the evaporated species and intentionally supplied oxygen molecules at the growth front as well as the interfacial energy between diamond and MgO.

  • PDF

Review on Post-Processing of Diamond Thin Film Semiconductor (박막 다이아몬드 필름의 후처리 공정법에 대한 고찰)

  • 이헌택;이한영;황운택
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.253-256
    • /
    • 1995
  • This paper reviewed the methods about cost-processing of diamond stone and thin film. Five different crises of annealing conditions have been discussed with the electrical properties of doping and implantation.

  • PDF

Synthesis of Diamond Thin Film by Helicon Plasma Chemical Vapor Deposition

  • Hyun, Jun-Won;Kim, Yong-Kin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 2000
  • Diamond films have been achieved on Si(100) substrates using helicon plasma chemical vapor deposition(HPCVD), Gas mixtures with methane and hydrogen have been used. The growth characteristics were investigated by means of X-ray photoelectroton spectroscopy, Atomic force microscopy and X-ray diffraction. We obtained a plasma density as high as 10$\^$10/~10$\^$11/ cm$\^$-3/ by helicon source. The smooth(100) faces of submicron diamond crystallites were found to exhibit pyramidal shaped architecture, The XPS spectrum for the nucleation layer indicates the presence of diamond at 285.4 eV, close to the reported value of 285.5 eV for diamond , XRD results demonstrates the existence of polycrystalline diamond as the diamond (111) and (220) peaks.

  • PDF

Measurement of the Thermal Conductivity of a Polycrystalline Diamond Thin Film via Light Source Thermal Analysis

  • Kim, Hojun;Kim, Daeyoon;Lee, Nagyeong;Lee, Yurim;Kim, Kwangbae;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.31 no.12
    • /
    • pp.665-671
    • /
    • 2021
  • A 1.8 ㎛ thick polycrystalline diamond (PCD) thin film layer is prepared on a Si(100) substrate using hot-filament chemical vapor deposition. Thereafter, its thermal conductivity is measured using the conventional laser flash analysis (LFA) method, a LaserPIT-M2 instrument, and the newly proposed light source thermal analysis (LSTA) method. The LSTA method measures the thermal conductivity of the prepared PCD thin film layer using an ultraviolet (UV) lamp with a wavelength of 395 nm as the heat source and a thermocouple installed at a specific distance. In addition, the microstructure and quality of the prepared PCD thin films are evaluated using an optical microscope, a field emission scanning electron microscope, and a micro-Raman spectroscope. The LFA, LaserPIT-M2, and LSTA determine the thermal conductivities of the PCD thin films, which are 1.7, 1430, and 213.43 W/(m·K), respectively, indicating that the LFA method and LaserPIT-M2 are prone to errors. Considering the grain size of PCD, we conclude that the LSTA method is the most reliable one for determining the thermal conductivity of the fabricated PCD thin film layers. Therefore, the proposed LSTA method presents significant potential for the accurate and reliable measurement of the thermal conductivity of PCD thin films.

Synthesis of diamond thin film on WC-Co by RF PACVO (고주파 플라즈마 CVD에 의한 초경합금상에 다이아몬드 박막의 합성)

  • 김대일;이상희;박종관;박구범;조기선;박상현;이덕출
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.452-455
    • /
    • 2000
  • Diamond thin films were synthesized on WC-Co substrate at various experimental parameters using 13.56MHz RF PACVD(radio frequency plasma-assisted chemical vapor deposition). In order to increase the nucleation density, the WC-Co substrate was polished with 3$\mu\textrm{m}$ diamond paste. And the WC-Co substrate was pretreated in HNO$_3$: H$_2$O = 1:1 and O$_2$ plasma. In H$_2$-CH$_4$gas mixture, the crystallinity of thin film increased with decreasing CH$_4$concentration at 800W discharge power and 20torr reaction pressure. In H$_2$-CH$_4$-O$_2$gas mixture, the crystallinity of thin film increased with increasing O$_2$concentration at 800W discharge power, 20torr reaction pressure and 4% CH$_4$concentration.

  • PDF

Deposition of diamond thin film by MPECVD method (마이크로웨이브 화학 기상 증착법을 이용한 다이아몬드 박막의 증착)

  • Sung Hoon Kim;Young Soo Park;Jo-Won Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.1
    • /
    • pp.92-99
    • /
    • 1994
  • Diamond thin film was deposited on n type (100) Si substrate by MPECVD(Microwave plasma Enhanced Chemical Vapor Deposition). For the increase in nucleation density of diamond, Si substrate was pretreated by diamond powder or negative bias voltage was applied to the substrate during the initial deposition. In the case of retreated Si substrate, the diamond thin film quality was enhanced with increasing the total pressure in the range of 20~150 Torr. For the negative bias voltage, the formation condition of the diamond was seriously affected by $CH_4$ concentration and total pressure. The formation condition will be discussed with electrical current of substrate generated by plasma ions which depend on $CH_4$concentration, bias voltage, and total pressure.

  • PDF

Characterization of Helicon Plasma by H$_2$ Gas Discharge and Fabrication of Diamond Tinn Films

  • Hyun, June-Won;Kim, Yong-Jin;Noh, Seung-Jeong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.2
    • /
    • pp.12-17
    • /
    • 2000
  • Helicon waves were excited by a Nagoya type III antenna in magnetized plasma, and hydrogen and methane are fed through a Mass Flow Controller(MFC). We made a diagnosis of properties of helicon plasma by H$_2$gaseous discharge, and fabricated the diamond thin film. The maximum measured electron density was 1${\times}$10$\^$10/ cm$\^$-3/. Diamond films have been growo on (100) silicon substrate using the helicon plasma chemical vapor deposition. Diamond films were deposited at a pressure of 0.1 Torr, deposition time of 40~80 h, a substrate temperature of 700$^{\circ}C$ and methane concentrations of 0.5~2.5%. The growth characteristics were investigated by means of X-ray Photoelectron (XPS) and X-ray Diffraction(XRD), XRD and XPS analysis revealed that SiC was formed, and finally diamond particles were definitely deposited on it. With increasing deposition time, the thickness and crystallization of the daimond thin film increased, For this system the optimum condition of methane concentration was estimated to near to 1.5%.

  • PDF