• 제목/요약/키워드: diameter-thickness ratio

검색결과 361건 처리시간 0.026초

전.후방 캔 압출공정의 성형특성 연구 (A Study on the Forming Characteristics of Forward and Backward Extrusions)

  • 심지훈;최호준;옥정한;함병수;황병복
    • 한국정밀공학회지
    • /
    • 제22권3호
    • /
    • pp.86-92
    • /
    • 2005
  • In this paper a forward-backward can extrusion process are analyzed by using rigid-plastic FEM simulation. FEM simulation is conducted to investigate forming characteristics such as deformation modes fur different process parameters. Design parameters such as thickness ratio, punch angle, friction factor and diameter ratio are selected to study the effect of them on the pattern of material flow. The analysis is focused mainly on the influences of the design factors on deformation pattern in terms of forming load, extruded length ratio and volume ratio. It is known for the simulation that the forming load, the length ratio and the volume ratio increase as the thickness ratio (TR), the wall thickness in forward direction to that in backward direction, decreases. The various punch angles have slight influence on the forming load. length ratio and volume ratio. However friction factor have little effect on the forming characteristics such as the forming load, volume ratio and so on. In addition the forming load increases as diameter ratio (DR), the outer diameter of a can in forward direction to that in backward direction, increases. Furthermore the extruded length ratio is lowest with a certain value of DR=0.85 among diameter ratios. Pressure distribution exerted on the die-material interface is illustrated schematically.

유한요소 해석을 이용한 현장 콘크리트 부착강도 측정조건 (Measurement Conditions of Concrete Pull-off Test in Field from Finite Element Analysis)

  • 김성환;정원경;권혁;김현오;이봉학
    • 산업기술연구
    • /
    • 제22권A호
    • /
    • pp.185-192
    • /
    • 2002
  • The performance of old and the new concrete construction depends upon bond strength between old and the new concrete. Current adhesive and strength measurement method ignores the effect of stress concentration from shape of specimens. Therefore, this research calculates stress concentration coefficient as the ratio of drilling depth to drilling diameter($h_s/D$), the ratio of overlay thickness to drilling diameter($h_0/D$), the ratio of steel disk thickness to drilling diameter(t/D), the ratio of overlay elastic modulus to substrate modulus($E_1/E_0$), the distance from core to corner border(L_$_{corner}$) and the distance between cores(L_$_{coic}$) vary. The finite element method is adapted to analysis The results from 'the F.E.M analysis are as follows. The stress concentration effects can be minimized when the ratio of drilling depth to drilling diameter($h_s/D$) is 0.20~0.25, the elastic modulus ratio($E_1/E_0$) is 06~1.0, and the ratio of steel disk thickness to drilling diameter(t/D) is 3.0. The overlay thickness, the distance from specimens to corner border(L_$_{corner}$), the distance between cores(L_$_{coic}$) almost do not affect to the stress concentration.

  • PDF

Static strength of collar-plate reinforced tubular T-joints under axial loading

  • Shao, Yong-Bo
    • Steel and Composite Structures
    • /
    • 제21권2호
    • /
    • pp.323-342
    • /
    • 2016
  • To study the effect of collar-plate reinforcement on the static strength of tubular T-joints under axial loading, fundamental research work is carried out from both experimental test and finite element (FE) simulation. Through experimental tests on 7 collar-plate reinforced and 7 corresponding un-reinforced tubular T-joints under axial loading, the reinforcing efficiency is investigated. Thereafter, the static strengths of the above 14 models are analyzed by using FE method, and it is found that the numerical results agree reasonably well with the experimental data to prove the accuracy of the presented FE model. Additionally, a parametric study is conducted to analyze the effect of some geometrical parameters, i.e., the brace-to-chord diameter ratio ${\beta}$, the chord diameter-to-chord wall thickness ratio $2{\gamma}$, collar-plate thickness to chord wall thickness ratio ${\tau}_c$, and collar-plate length to brace diameter ratio $l_c/d_1$, on the static strength of a tubular T-joint. The parametric study shows that the static strength can be greatly improved by increasing the collar-plate thickness to chord wall thickness ratio ${\tau}_c$ and the collar-plate length to brace diameter ratio $l_c/d_1$. Based on the numerical results, parametric equations are obtained from curving fitting technique to estimate the static strength of a tubular T-joint with collar-plate reinforcement under axial loading, and the accuracy of these equations is also evaluated from error analysis.

An analytical investigation of soil disturbance due to sampling penetration

  • Diao, Hongguo;Wu, Yuedong;Liu, Jian;Luo, Ruping
    • Geomechanics and Engineering
    • /
    • 제9권6호
    • /
    • pp.743-755
    • /
    • 2015
  • It is well known that the quality of sample significantly determines the accuracy of soil parameters for laboratory testing. Although sampling disturbance has been studied over the last few decades, the theoretical investigation of soil disturbance due to sampling penetration has been rarely reported. In this paper, an analytical solution for estimating the soil disturbance due to sampling penetration was presented using cavity expansion method. Analytical results in several cases reveal that the soil at different location along the sample centerline experiences distinct phases of strain during the process of sampling penetration. The magnitude of induced strain is dependent on the position of the soil element within the sampler and the sampler geometry expressed as diameter-thickness ratio D/t and length-diameter ratio L/D. Effects of sampler features on soil disturbance were also studied. It is found that the induced maximum strain decreases exponentially with increasing diameter-thickness ratio, indicating that the sampling disturbance will reduce with increasing diameter or decreasing wall thickness of sampler. It is also found that a large length-diameter ratio does not necessarily reduce the disturbance. An optimal length-diameter ratio is suggested for the further design of improved sampler in this study.

동축분류 확산화염에서 화염안정화와 연소특성에 관한 연구 (An Experimental Study on Flame Stability and Combustion Characteristics of Coaxial Diffusion Flame)

  • 유현석;오신규
    • 대한기계학회논문집
    • /
    • 제19권2호
    • /
    • pp.509-518
    • /
    • 1995
  • A study for the flame stability and the combustion characteristics of coaxial diffusion flame was conducted. The fuel employed was natural gas. The experimental variables were rim thickness of fuel tube, blockage ratio of the outer diameter of fuel tube to the inner diameter of air tube, and momentum ratio of fuel to air. It was consequently found that the stability in the neighborhood of the fuel rim depended on the rim thickness, especially in the case of above 3 mm, and that the stable region of the flame extended remarkably due to the formation of recirculation zone above rim. The effect of the blockage ratio on the flame stability was found to be minor in the case of above 3 mm of rim thickness. Between the momentum ratio 2 and 3, the stable flame zone was widely established as well good combustion. With increasing the fuel-air momentum ratio, axial velocity, turbulence intensity, and Reynolds stress increased.

Tests of concrete-filled double skin CHS composite stub columns

  • Zhao, Xiao-Ling;Grzebieta, Raphael;Elchalakani, Mohamed
    • Steel and Composite Structures
    • /
    • 제2권2호
    • /
    • pp.129-146
    • /
    • 2002
  • This paper describes a series of compression tests carried out on concrete filled double skin tubes (CFDST). Both outer and inner tubes are cold-formed circular hollow sections (CHS). Six section sizes were chosen for the outer tubes with diameter-to-thickness ratio ranging from 19 to 57. Two section sizes are chosen for the inner tubes with diameter-to-thickness ratio of 17 and 33. The failure modes, strength, ductility and energy absorption of CFDST are compared with those of empty single skin tubes. Increased ductility and energy absorption have been observed for CFDST especially for those having slender outer tubes with larger diameter-to-thickness ratio. Predictions from several theoretical models are compared with the ultimate strength of CFDST stub columns obtained in the tests. The proposed formula was found to be in good agreement with the experimental data.

Morphological Analysis of the Myelinated Parent Axons that Innervate Rat Upper Molar Pulps in the Trigeminal Ganglion

  • Paik, Sang Kyoo;Kim, Jong Ho;Kim, Tae Heon;Bae, Yong Chul
    • International Journal of Oral Biology
    • /
    • 제40권4호
    • /
    • pp.175-182
    • /
    • 2015
  • Previous studies suggested that myelinated axons innervating rat molar pulps undergo morphological changes in their peripheral course. However, little information is available on the morphological feature of the parent axons at the site of origin. We therefore investigated the size of the myelinated parent axons and their morphological features at the proximal sensory root of the trigeminal ganglion by horseradish peroxidase (HRP) injection into rat upper molar pulps and subsequent light and electron microscopy. A total of 248 HRP-labeled myelinated axons investigated were highly variable in the size. Fiber area, fiber diameter, axon area (axoplasm area), axon diameter (axoplasm diameter), and myelin thickness were $11.32{\pm}8.36{\mu}m^2(0.80{\sim}53.17{\mu}m^2)$, $3.99{\pm}1.53{\mu}m(1.08{\sim}9.26{\mu}m)$, $8.70{\pm}6.30{\mu}m^2(0.70{\sim}41.83{\mu}m^2)$, $3.13{\pm}1.13{\mu}m(0.94{\sim}7.20{\mu}m)$ and $0.43{\pm}0.23{\mu}m(0.07{\sim}1.06{\mu}m)$, respectively. The g-ratio (axon diameter / fiber diameter) of the labeled axons was $0.79{\pm}0.05$ (0.61~0.91). Axon diameter was highly correlated with myelin thickness (correlation coefficients, r=0.83) but little correlated with g-ratio (r=-0.33) of individual myelinated parent axons. These results indicate that myelin thickness of the myelinated parent axons innervating rat molar pulps increase with increasing axon diameter, thus maintaining a constant g-ratio.

두께와 직경 비에 따른 두께진동모드 압전소자의 공진 변위 궤적 (Trajectory of Resonant Displacement of Thickness Vibration Mode Piezoelectric Devices According to Diameter/Thickness Ratio)

  • 정영호
    • 한국전기전자재료학회논문지
    • /
    • 제25권2호
    • /
    • pp.105-109
    • /
    • 2012
  • In this study, thickness vibration mode piezoelectric devices for AE sensor application were simulated using ATILA FEM program, and then fabricated. Trajectory resonant displacement and electro mechanical coupling factors of the piezoelectric devices were investigated. The simulation results showed that excellent displacement and electro mechanical coupling factor was obtained when the ratio of diameter/thickness($\Phi/T$) was 0.75. The piezoelectric device of $\Phi/T$=0.75 exhibited the optimum values of fr= 183 kHz, displacement= $4.44{\times}10^{-7}[m]$, $k_{33}$= 0.69, which were suitable for the application of AE sensor piezoelectric device.

원형강관 기둥의 구조적인 거동 및 강도에 관한 연구 (A Study on the Structural Behavior and the Strength of Circular Hollow Steel(CHS) Section Columns)

  • 강두원;권영봉
    • 한국강구조학회 논문집
    • /
    • 제21권5호
    • /
    • pp.505-514
    • /
    • 2009
  • 본 논문에는 압측실험 결과에 근거한 원형강관의 구조적인 거동 및 설계강도에 대하여 기술하였다. 원형강관 기둥의 극한강도는 직경-두께비 및 세장비에 의하여 결정된다. 원형강관의 직경-두께비가 큰 경우 전체좌굴 발생 이전에 탄성 및 비탄성 국부좌굴이 일어나게 되어 기둥강도를 감소시키게 된다. 원형강관의 국부좌굴이 기둥강도에 미치는 영향을 연구하기 위하여 두께 2.8mm, 3.2 mm인 SM400 강판을 용접하여 직경-두께비 45에서 170까지인 원형강관을 제작하여 압축실험을 수행하였다. 실험결과에 따르면 직경-두께비가 현행 설계기준의 항복한계보다 작은 원형강관의 경우에도 비탄성국부좌굴이 발생하였으나 상당한 크기의 후좌굴강도를 보여 최대응력은 항복강도를 상회하였다. 도로교설계기준(2005)에 의한 허용응력은 실험결과와 비교하여 상당히 안전치로 나타났다. 최근에 개발된 직접강도법을 원형강관에 적용하기 위하여 실험 및 수치해석 결과와 비교한 결과, 제안된 직접강도법은 국부좌굴과 전체좌굴의 혼합 유무와 상관없이 원형강관 기둥의 극한강도를 적절하게 예측할 수 있는 것으로 나타났다.

Mechanical characteristics of hollow shear connectors under direct shear force

  • Uenaka, Kojiro;Higashiyama, Hiroshi
    • Steel and Composite Structures
    • /
    • 제18권2호
    • /
    • pp.467-480
    • /
    • 2015
  • The steel-concrete composite decks have high fatigue durability and deformability in comparison with ordinary RC slabs. Withal, the steel-concrete composite deck is mostly heavier than the RC slabs. We have proposed herein a new type of steel-concrete composite deck which is lighter than the typical steel-concrete composite decks. This can be achieved by arranging hollow sectional members as shear connectors, namely, half-pipe or channel shear connectors. The present study aims to experimentally investigate mechanical characteristics of the half-pipe shear connectors under the direct shear force. The shear bond capacity and deformability of the half-pipe shear connectors are strongly affected by the thickness-to-diameter ratio. Additionally, the shear strengths of the hollow shear connectors (i.e. the half-pipe and the channel shear connectors) are compared. Furthermore, shear capacities of the hollow shear connectors equivalent to headed stud connectors are also discussed.