• Title/Summary/Keyword: diagnostic laboratories

Search Result 91, Processing Time 0.023 seconds

Evaluation of Invasive and Noninvasive Methods for the Diagnosis of Helicobacter Pylori Infection

  • Cosgun, Yasemin;Yildirim, Abdullah;Yucel, Mihriban;Karakoc, Ayse Esra;Koca, Gokhan;Gonultas, Alpaslan;Gursoy, Gul;Ustun, Huseyin;Korkmaz, Meliha
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.12
    • /
    • pp.5265-5272
    • /
    • 2016
  • Objective: The present study was conducted to evaluate invasive and noninvasive diagnostic methods for detection of Helicobacter pylori (H. pylori) in patients admitted with dyspeptic complaints and to compare sensitivities and specificities. Method: Sets of four gastric biopsy specimens were obtained from a total of 126 patients included in the study. The presence of H. pylori was determined by invasive tests including culture, rapid urease test, polymerase chain reaction (PCR) and histopathology. Among noninvasive tests, urea breath test, serological tests and enzyme-linked immunosorbent assay (ELISA) were performed. Results: H. pylori was isolated in 79 (62.7%) gastric biopsy cultures, whereas positivity was concluded for 105 (83.3%) patients by rapid urease test, for 106 (84.1%) by PCR, for 110 (87.3%) by histopathology, for 119 (94.4%) by urea breath test, and for 107 (84.9%) by ELISA. In the present study, the culture findings and histopathological examination findings were accepted as gold standard. According to the gold standard, urea breath test had the highest sensitivity (96.5%) and the lowest specificity (30%), whereas culture and histopathology had the highest specificities (100%). Conclusion: The use of PCR invasively with gastric biopsy samples yielded parallel results with the gold standard. PCR can be recommended for routine use in the diagnosis of H. pylori.

Attenuated total reflection Fourier transform infrared as a primary screening method for cancer in canine serum

  • Macotpet, Arayaporn;Pattarapanwichien, Ekkachai;Chio-Srichan, Sirinart;Daduang, Jureerut;Boonsiri, Patcharee
    • Journal of Veterinary Science
    • /
    • v.21 no.1
    • /
    • pp.16.1-16.10
    • /
    • 2020
  • Cancer is a major cause of death in dogs worldwide, and the incidence of cancer in dogs is increasing. The attenuated total reflection Fourier transform infrared spectroscopic (ATR-FTIR) technique is a powerful tool for the diagnosis of several diseases. This method enables samples to be examined directly without pre-preparation. In this study, we evaluated the diagnostic value of ATR-FTIR for the detection of cancer in dogs. Cancer-bearing dogs (n = 30) diagnosed by pathologists and clinically healthy dogs (n = 40) were enrolled in this study. Peripheral blood was collected for clinicopathological diagnosis. ATR-FTIR spectra were acquired, and principal component analysis was performed on the full wave number spectra (4,000-650 cm-1). The leave-one-out cross validation technique and partial least squares regression analysis were used to predict normal and cancer spectra. Red blood cell counts, hemoglobin levels and white blood cell counts were significantly lower in cancer-bearing dogs than in clinically healthy dogs (p < 0.01, p < 0.01 and p = 0.03, respectively). ATR-FTIR spectra showed significant differences between the clinically healthy and cancer-bearing groups. This finding demonstrates that ATR-FTIR can be applied as a screening technique to distinguish between cancer-bearing dogs and healthy dogs.

Microbiological Characteristics of Nocardia takedensis Isolated from Skin Lesion, in Korea

  • Kang, Hye-Sook;Park, Gyu-Nam;Kim, Hye-Ran;Chang, Kyung-Soo
    • Biomedical Science Letters
    • /
    • v.23 no.2
    • /
    • pp.96-103
    • /
    • 2017
  • Nocardia species (spp.) are opportunistic pathogen in immunocompromised hosts. The genus Nocardia contains more than 70 species. Nocardia takedensis has been recently reported as a new species of the genus Nocardia. In this study, we describes the first clinical isolate of N. takedensis from the skin lesion in Busan, Korea. For the identification of clinical isolate to the species level as N. takedensis, classical methods (colony morphology, biochemical characteristics, and antimicrobial susceptibility), molecular method (16S rRNA gene sequencing), and MS (mass spectrometry) analysis were conducted. Clinical isolates grew slowly on the culture media (5% sheep blood agar and chocolate agar) under 5% $CO_2$ condition. Especially, carotene pigmentation was detected well on the media. Using mass spectrometry, Nocardia isolate was not identified to the species level. However, molecular method based on 16S rRNA sequencing confirmed the isolate as N. takedensis correctly. N. takedensis isolate was partial positive for acid-fast bacilli on the Ziehl-Neelsen method. And it was observed to be resistance to amoxicillin/clavulanic acid and ciprofloxacin. Our results provide useful information to develop optimal identification protocol of N. takedensis in clinical diagnostic laboratories.

Construction of a System for the Strawberry Nursery Production towards Elimination of Latent Infection of Anthracnose Fungi by a Combination of PCR and Microtube Hybridization

  • Furuta, Kazuyoshi;Nagashima, Saki;Inukai, Tsuyoshi;Masuta, Chikara
    • The Plant Pathology Journal
    • /
    • v.33 no.1
    • /
    • pp.80-86
    • /
    • 2017
  • One of the major problems in strawberry production is difficulty in diagnosis of anthracnose caused by Colletotrichum acutatum or Glomerella cingulata in latent infection stage. We here developed a diagnostic tool for the latent infection consisting of initial culturing of fungi, DNA extraction, synthesis of PCR-amplified probes and microtube hybridization (MTH) using a macroarray. The initial culturing step is convenient to lure the fungi out of the plant tissues, and to extract PCR-inhibitor-free DNA directly from fungal hyphae. For specific detection of the fungi, PCR primers were designed to amplify the fungal MAT1-2 gene. The subsequent MTH step using the PCR products as probes can replace the laborious electrophoresis step providing us sequence information and high-throughput screening. Using this method, we have conducted a survey for a few thousands nursery plants every year for three consecutive years, and finally succeeded in eliminating latent infection in the third year of challenge.

Congenital transmission of Theileria sergenti in cattle verified by immunohistochemistry (소 Theileria sergenti의 태반감염에 대한 면역세포화학적 증명)

  • Baek, Byeong-kirl;Kim, Jin-ho;Onuma, Misao
    • Korean Journal of Veterinary Research
    • /
    • v.37 no.4
    • /
    • pp.825-829
    • /
    • 1997
  • The spleen and placenta from the aborted fetuses as well as lymphnodes and placenta of the corresponding dams naturally infected with T sergenti were used to localize the parasite antigens by immunohistochemical staining for the possible congenital transmission of theileriosis. Parasite-specific antigens were detected immunohistochemically by incubating the sections with specific monoclonal antibody prepared against 34KD surface antigen of T sergenti and visualized via the avidin biotin complex(ABC) method. Specific T sergenti antigen was detected in the sections of formalin or acetone-fixed fetal spleens and placenta. Similar antigens were also demonstrated in lymphnodes and placentas of the corresponding dams. It is concluded that this technique will eventually play an important role in specialized diagnostic laboratories in the verification/evaluation of congenital infection with T sergenti.

  • PDF

Improved Detection of Mycobacterium leprae by One-tube Nested Polymerase Chain Reaction

  • Wang, Hye-Young;Whang, Joo-Hwan;Kim, Jong-Pill;Cho, Jang-Eun;Bang, Hye-Eun;Lee, Hye-Young;Cho, Sang-Nae
    • Biomedical Science Letters
    • /
    • v.13 no.4
    • /
    • pp.319-324
    • /
    • 2007
  • One-tube nested polymerase chain reaction (PCR) was evaluated for its efficacy in detecting Mycobacterium leprae in biopsy samples from leprosy patients. Primers were derived from the M leprae-specific element (RLEP) sequences which yield a 230 bp fragment. The specificity and the sensitivity of the one-tube nested PCR were compared with those of single PCR for detecting M leprae. The results showed that the one-tube nested PCR was about 100 times more sensitive than that of the single indicating the one-tube nested primer sets developed in this study can be an effective screening tool for the detection of M leprae in clinical diagnostic laboratories.

  • PDF

Navigating the landscape of clinical genetic testing: insights and challenges in rare disease diagnostics

  • Soo Yeon Kim
    • Childhood Kidney Diseases
    • /
    • v.28 no.1
    • /
    • pp.8-15
    • /
    • 2024
  • With the rapid evolution of diagnostic tools, particularly next-generation sequencing, the identification of genetic diseases, predominantly those with pediatric-onset, has significantly advanced. However, this progress presents challenges that span from selecting appropriate tests to the final interpretation of results. This review examines various genetic testing methodologies, each with specific indications and characteristics, emphasizing the importance of selecting the appropriate genetic test in clinical practice, taking into account factors like detection range, cost, turnaround time, and specificity of the clinical diagnosis. Interpretation of variants has become more challenging, often requiring further validation and significant resource allocation. Laboratories primarily classify variants based on the American College of Medical Genetics and Genomics and the Association for Clinical Genomic Science guidelines, however, this process has limitations. This review underscores the critical role of clinicians in matching patient phenotypes with reported genes/variants and considering additional factors such as variable expressivity, disease pleiotropy, and incomplete penetrance. These considerations should be aligned with specific gene-disease characteristics and segregation results based on an extended pedigree. In conclusion, this review aims to enhance understanding of the complexities of clinical genetic testing, advocating for a multidisciplinary approach to ensure accurate diagnosis and effective management of rare genetic diseases.

Noninvasive Prenatal Diagnosis using Cell-Free Fetal DNA in Maternal Plasma: Clinical Applications

  • Yang, Young-Ho;Han, Sung-Hee;Lee, Kyoung-Ryul
    • Journal of Genetic Medicine
    • /
    • v.8 no.1
    • /
    • pp.1-16
    • /
    • 2011
  • Owing to the risk of fetal loss associated with prenatal diagnostic procedures (amniocentesis, chorionic villus sampling), noninvasive prenatal diagnosis (NIPD) is ultimate goal of prenatal diagnosis. The discovery of circulating cell-free fetal DNA (cffDNA) in maternal plasma in 1997 has opened up new probabilities for NIPD by Dr. Lo et al. The last decade has seen great development in NIPD. Fetal sex and fetal RhD status determination by cffDNA analysis is already in clinical use in certain countries. For routine use, this test is limited by the amount of cell-free maternal DNA in blood sample, the lack of universal fetal markers, and appropriate reference materials. To improve the accuracy of detection of fetal specific sequences in maternal plasma, internal positive controls to confirm to presence of fetal DNA should be analyzed. We have developed strategies for noninvasive determination of fetal gender, and fetal RhD genotyping using cffDNA in maternal plasma, using real-time quantitative polymerase chain reaction (RT-PCR) including RASSF1A epigenetic fetal DNA marker (gender-independent) as internal positive controls, which is to be first successful study of this kind in Korea. In our study, accurate detection of fetal gender through gestational age, and fetal RhD genotyping in RhD-negative pregnant women was achieved. In this assay, we show that the assay is sensitive, easy, fast, and reliable. These developments improve the reliability of the applications of circulating fetal DNA when used in clinical practice to manage sex-linked disorders (e.g., hemophilia, Duchenne muscular dystrophy), congenital adrenal hyperplasia (CAH), RhD incompatibility, and the other noninvasive pregnant diagnostic tests on the coming soon. The study was the first successful case in Korea using cffDNA in maternal plasma, which has created a new avenue for clinical applications of NIPD.

Designing a Molecular Diagnostic Laboratory for Testing Highly Pathogenic Viruses (고병원성 바이러스 검사를 위한 분자진단검사실 구축)

  • Jung, Tae Won;Jung, Jaeyoung;Kim, Sunghyun;Kim, Young-Kwon
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.53 no.2
    • /
    • pp.143-150
    • /
    • 2021
  • The recent spread of novel and highly variant pathogenic viruses, including the coronavirus (SARS-CoV-2), has increased the demand for diagnostic testing for rapid confirmation. This has resulted in investigating the functional capability of each space, and preparing facility guidelines to secure the safety of medical technologists. During viral evaluations, there is a requirement of negative pressure facilities along with thread separation, during pre-treatment of samples and before nucleic acid amplification. Space composition therefore needs to be planned by considering unidirectional air flow. This classification of safety management facilities is designated as biosafety level 2, and personal protective equipment is placed accordingly. In case of handling dangerous materials, they need to be carried out of the biosafety cabinet, and sterilizers are required for suitable disposal of infectious agents. A common feature of domestic laboratories is maintenance of the sample pre-treatment space at a negative pressure of -2.5 Pa or less, and arranging separate pre-treatment and reagent preparation spaces during the test process. We believe that the data generated in this study is meaningful, and offers an efficient direction and detailed flow for separation of the inspection process and space functions. Moreover, this study introduces construction of the laboratory by applying the safety management standards.

Adoption and Efficacy of ISO 15189 in Medical Laboratories for Diagnostic and Research (메디컬시험기관에서 ISO 15189 도입의 필요성과 시행의 효용성)

  • Yang, Man-Gil;Lee, Won Ho;Jun, Jin Hyun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.2
    • /
    • pp.158-167
    • /
    • 2016
  • The requirements for medical laboratories ISO 15189 is examined in organization and a quality management system, stressing the importance of evidence, document control, and control of records and clinical material. Medical services are provided from the areas of resource management, and pre-examination, examination and post-examination processes. The main goal of ISO 15189 accreditation is to improve the quality of laboratory services provided for patients and clinical users not only through compliance with consensually developed and harmonized requirements but also by adopting the philosophy of continual improvement using the Plan-Do-Check-Act cycle. Laboratory quality should be evaluated and improved in all steps of the testing process as the state-of-the art indicates that the pre- and post-analytical phases are more vulnerable to errors than the intra-analytical phase. The Korea Laboratory Accreditation Scheme (KOLAS), a national accreditation body, provides medical laboratory accreditations for appropriate approaches to evaluating the competence of a medical laboratory in providing effective services to its customers and clinical users. Adoption of ISO 15189 in 2010s as a government policy has been delayed, and only 5 laboratories have been accredited to date in Korea. The medical laboratories should seek the adoption of ISO 15189 with a positive attitude for quality improvement and strengthening of international competitiveness.