• Title/Summary/Keyword: diagnostic biomarker

Search Result 141, Processing Time 0.026 seconds

Haptoglobin Levels in Turkish Patients with Bladder Cancer and its Association with Clinicopathological Features

  • Pirincci, Necip;Gecit, Ilhan;Gunes, Mustafa;Kemik, Ahu Sarbay;Yusel, Mehmet Bilgehan;Kaba, Mehmet;Ceylan, Kadir;Aslan, Mehmet
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6063-6066
    • /
    • 2012
  • Although alteration in the haptoglobin phenotype has been reported in patients with bladder cancer, serum haptoglobin levels have not been evaluated. We hypothesized that serum haptoglobin can be used as a biomarker. The aim of this study was to evaluate the expression of haptoglobin in bladder cancer and to determine the relationship with clinicopathological features. A total of 68 serum specimens obtained before surgery were used to investigate haptoglobin expression using the sandwich ELISA technique. Serum haptoglobin levels were higher in the patients with bladder cancer compared to healthy controls (p<0.0001). Additionally, the levels of haptoglobin protein increased with increasing tumor grades (p<0.001) and were significantly higher in patients with metastatic disease and the presence of lymphovascular involvement, lymph node metastases and increasing tumor burden (p<0.0001). This study suggests that elevated haptoglobin levels are associated with a higher stage, grade, and extent of distant metastasis and larger tumor size. Haptoglobin may therefore provide a useful diagnostic and treatment biomarker for patients with bladder cancer.

Artificial Intelligence in the Pathology of Gastric Cancer

  • Sangjoon Choi;Seokhwi Kim
    • Journal of Gastric Cancer
    • /
    • v.23 no.3
    • /
    • pp.410-427
    • /
    • 2023
  • Recent advances in artificial intelligence (AI) have provided novel tools for rapid and precise pathologic diagnosis. The introduction of digital pathology has enabled the acquisition of scanned slide images that are essential for the application of AI. The application of AI for improved pathologic diagnosis includes the error-free detection of potentially negligible lesions, such as a minute focus of metastatic tumor cells in lymph nodes, the accurate diagnosis of potentially controversial histologic findings, such as very well-differentiated carcinomas mimicking normal epithelial tissues, and the pathological subtyping of the cancers. Additionally, the utilization of AI algorithms enables the precise decision of the score of immunohistochemical markers for targeted therapies, such as human epidermal growth factor receptor 2 and programmed death-ligand 1. Studies have revealed that AI assistance can reduce the discordance of interpretation between pathologists and more accurately predict clinical outcomes. Several approaches have been employed to develop novel biomarkers from histologic images using AI. Moreover, AI-assisted analysis of the cancer microenvironment showed that the distribution of tumor-infiltrating lymphocytes was related to the response to the immune checkpoint inhibitor therapy, emphasizing its value as a biomarker. As numerous studies have demonstrated the significance of AI-assisted interpretation and biomarker development, the AI-based approach will advance diagnostic pathology.

Plasma Osteopontin Is a Useful Diagnostic Biomarker for Advanced Non-Small Cell Lung Cancer

  • Han, Seon-Sook;Lee, Seung-Joon;Kim, Woo Jin;Ryu, Dong Ryeol;Won, Jun Yeon;Park, Shinyoung;Cheon, Myeong Ju
    • Tuberculosis and Respiratory Diseases
    • /
    • v.75 no.3
    • /
    • pp.104-110
    • /
    • 2013
  • Background: Osteopontin (OPN) and carbonic anhydrase IX (CAIX), which are expressed on the surface of tumor cells, are associated with hypoxia during tumor development and progression. However, the roles of these proteins in the plasma of patients with non-small cell lung cancer (NSCLC) are poorly understood. Herein, we hypothesized that plasma OPN and CAIX levels could be used as diagnostic and prognostic tumor markers in patients with NSCLC. Methods: Fifty-three patients with NSCLC and 50 healthy control subjects were enrolled. We selected controls without malignancy and matched them with NSCLC patient cases according to age and gender. Blood samples were collected at the time of diagnosis; the plasma levels of OPN and CAIX were measured by enzyme-linked immunosorbent assays. Results: The plasma levels of OPN in the patients with NSCLC were significantly elevated as compared to those in the controls (p=0.016). However, there was no difference in the plasma level of CAIX between the NSCLC patients and controls. NSCLC patients with a distant metastasis had a remarkable increase in plasma OPN compared with patients without metastasis (p=0.026), but no such correlation was found for CAIX. There was no difference in overall survival rates according to the plasma level of OPN between the two groups (by Kaplan-Meier survival analysis). Conclusion: Plasma OPN levels were elevated in patients with NSCLC as compared with the controls, with greater elevation of OPN levels in the advanced stages of disease. Therefore, plasma OPN may have utility as a diagnostic, but not prognostic, biomarker of advanced NSCLC.

Clinical Significance and Prognostic Value of Pentraxin-3 as Serologic Biomarker for Lung Cancer

  • Zhang, Dai;Ren, Wei-Hong;Gao, Yun;Wang, Nian-Yue;Wu, Wen-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.7
    • /
    • pp.4215-4221
    • /
    • 2013
  • Purposes: Lung cancer is prevalent worldwide and improvements in timely and effective diagnosis are need. Pentraxin-3 as a novel serum marker for lung cancer (LC) has not been validated in large cohort studies. The aim of the study was to assess its clinical value in diagnosis and prognosis. Methods: We analyzed serum PTX-3 levels in a total of 1,605 patients with LC, benign lung diseases and healthy controls, as well as 493 non-lung cancer patients including 12 different types of cancers. Preoperative and postoperative data were further assessed in patients undergoing LC resection. The diagnostic performance of PTX-3 for LC and early-stage LC was assessed using receiver operating characteristics (ROC) by comparing with serum carcinoembryonic antigen (CEA), cytokeratin 19 fragments (CYFRA 21-1). Results: Levels of PTX-3 in serum were significantly higher in patients with LC than all controls. ROC curves showed the optimum diagnostic cutoff was 8.03ng/mL (AUC 0.823, [95%CI 0.789-0.856], sensitivity 72.8%, and specificity 77.3% in the test cohort; 0.802, [95%CI 0.762-0.843], sensitivity 69.7%, and specificity 76.4% in the validate cohort). Similar diagnostic performance of PTX-3 was observed for early-stage LC. PTX-3 decreased following surgical resection of LC and increased with tumor recurrence. Significantly elevated PTX-3 levels were also seen in patients with non-lung cancers. Conclusions: The present data revealed that PTX-3 was significantly increased in both tissue and serum samples in LC patients. PTX-3 is a valuable biomarker for LC and improved identification of patients with LC and early-stage LC from those with non-malignant lung diseases.

Machine Vision Platform for High-Precision Detection of Disease VOC Biomarkers Using Colorimetric MOF-Based Gas Sensor Array (비색 MOF 가스센서 어레이 기반 고정밀 질환 VOCs 바이오마커 검출을 위한 머신비전 플랫폼)

  • Junyeong Lee;Seungyun Oh;Dongmin Kim;Young Wung Kim;Jungseok Heo;Dae-Sik Lee
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.112-116
    • /
    • 2024
  • Gas-sensor technology for volatile organic compounds (VOC) biomarker detection offers significant advantages for noninvasive diagnostics, including rapid response time and low operational costs, exhibiting promising potential for disease diagnosis. Colorimetric gas sensors, which enable intuitive analysis of gas concentrations through changes in color, present additional benefits for the development of personal diagnostic kits. However, the traditional method of visually monitoring these sensors can limit quantitative analysis and consistency in detection threshold evaluation, potentially affecting diagnostic accuracy. To address this, we developed a machine vision platform based on metal-organic framework (MOF) for colorimetric gas sensor arrays, designed to accurately detect disease-related VOC biomarkers. This platform integrates a CMOS camera module, gas chamber, and colorimetric MOF sensor jig to quantitatively assess color changes. A specialized machine vision algorithm accurately identifies the color-change Region of Interest (ROI) from the captured images and monitors the color trends. Performance evaluation was conducted through experiments using a platform with four types of low-concentration standard gases. A limit-of-detection (LoD) at 100 ppb level was observed. This approach significantly enhances the potential for non-invasive and accurate disease diagnosis by detecting low-concentration VOC biomarkers and offers a novel diagnostic tool.

Deep-Learning-Based Molecular Imaging Biomarkers: Toward Data-Driven Theranostics

  • Choi, Hongyoon
    • Progress in Medical Physics
    • /
    • v.30 no.2
    • /
    • pp.39-48
    • /
    • 2019
  • Deep learning has been applied to various medical data. In particular, current deep learning models exhibit remarkable performance at specific tasks, sometimes offering higher accuracy than that of experts for discriminating specific diseases from medical images. The current status of deep learning applications to molecular imaging can be divided into a few subtypes in terms of their purposes: differential diagnostic classification, enhancement of image acquisition, and image-based quantification. As functional and pathophysiologic information is key to molecular imaging, this review will emphasize the need for accurate biomarker acquisition by deep learning in molecular imaging. Furthermore, this review addresses practical issues that include clinical validation, data distribution, labeling issues, and harmonization to achieve clinically feasible deep learning models. Eventually, deep learning will enhance the role of theranostics, which aims at precision targeting of pathophysiology by maximizing molecular imaging functional information.

Role of Nuclear Factor Erythroid 2-Related Factor 2 in Chronic Obstructive Pulmonary Disease

  • Ban, Woo Ho;Rhee, Chin Kook
    • Tuberculosis and Respiratory Diseases
    • /
    • v.85 no.3
    • /
    • pp.221-226
    • /
    • 2022
  • Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation due to chronic airway inflammation and destruction of the alveolar structure from persistent exposure to oxidative stress. The body has various antioxidant mechanisms for efficiently coping with such oxidative stress. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) is a representative system. Dysregulation of the Nrf2-ARE pathway is responsible for the development and promotion of COPD. Furthermore, COPD severity is also closely related to this pathway. There has been a clinical impetus to use Nrf2 for diagnostic and therapeutic purposes. Therefore, in this work, we systematically reviewed the clinical significance of Nrf2 in COPD patients, and discuss the value of Nrf2 as a potential COPD biomarker.

Five miRNAs as Novel Diagnostic Biomarker Candidates for Primary Nasopharyngeal Carcinoma

  • Tang, Jin-Feng;Yu, Zhong-Hua;Liu, Tie;Lin, Zi-Ying;Wang, Ya-Hong;Yang, La-Wei;He, Hui-Juan;Cao, Jun;Huang, Hai-Li;Liu, Gang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7575-7581
    • /
    • 2014
  • MicroRNAs (miRNAs) play an essential role in the development and progression of nasopharyngeal carcinomas (NPC). Despite advances in the field of cancer molecular biology and biomarker discovery, the development of clinically validated biomarkers for primary NPC has remained elusive. In this study, we investigated the expression and clinical significance of miRNAs as novel primary NPC diagnostic biomarkers. We used an array containing 2, 500 miRNAs to identify 22 significant miRNAs, and these candidate miRNAs were validated using 67 fresh NPC and 25 normal control tissues via quantitative real-time PCR (qRT-PCR). Expression and correlation analyses were performed with various statistical approaches, in addition to logistic regression and receiver operating characteristic curve analyses to evaluate diagnostic efficacy. qRT-PCR revealed five differentially expressed miRNAs (miR-93-5p, miR-135b-5p, miR-205-5p and miR-183-5p) in NPC tissue samples relative to control samples (p<0.05), with miR-135b-5p and miR-205-5p being of significant diagnostic value (p<0.01). Moreover, comparison of NPC patient clinicopathologic data revealed a negative correlation between miR-93-5p and miR-183-5p expression levels and lymph node status (p<0.05). These findings display an altered expression of many miRNAs in NPC tissues, thus providing information pertinent to pathophysiological and diagnostic research. Ultimately, miR-135b-5p and miR-205-5p may be implicated as novel NPC candidate biomarkers, while miR-93-5p, miR-650 and miR-183-5p may find application as relevant clinical pathology and diagnostic candidate biomarkers.

Diagnostic Evaluation of Enzyme Activity Related to Steroid Metabolism by Mass Spectrometry-Based Steroid Profiling

  • Choi, Man Ho;Chung, Bong Chul
    • Mass Spectrometry Letters
    • /
    • v.5 no.2
    • /
    • pp.35-41
    • /
    • 2014
  • Gas chromatography-mass spectrometry (GC-MS) methods have been used extensively in clinical steroid analyses. Evaluating the metabolic ratios of precursors to products by accurate quantification of individual steroid levels in biological samples can reveal the activities of enzymes associated with steroid metabolism. This review article discusses the impact of GC-MS-based steroid profiling on our understanding of the biochemical role of steroids and their metabolic enzymes in hormone-dependent diseases, such as congenital adrenal hyperplasia (CAH), cortisol-mediated hypertension, apparent mineralocorticoid excess (AME), male-pattern baldness, and breast and thyroid cancers. Steroid profiling is a comprehensive analytical technique that can be applied whenever the highest specificity is required and may be a reasonable initial diagnostic approach.

Identification of Serum MicroRNA-21 as a Biomarker for Early Detection and Prognosis in Human Epithelial Ovarian Cancer

  • Xu, Yun-Zhao;Xi, Qing-Hua;Ge, Wen-Liang;Zhang, Xiao-Qian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.1057-1060
    • /
    • 2013
  • Recent investigations have confirmed up-regulation of serum miR-21 and its diagnostic and prognostic value in several human malignancies. In this study, we examined serum miR-21 levels in epithelial ovarian cancer (EOC) patients, and explored its association with clinicopathological factors and prognosis. The results showed significantly higher serum miR-21 levels in EOC patients than in healthy controls. In addition, increased serum miR-21 expression was correlated with advanced FIGO stage, high tumor grade, and shortened overall survival. These findings indicate that serum miR-21 may serve as a novel diagnostic and prognostic marker, and be used as a therapeutic target for the treatment of EOC.