• Title/Summary/Keyword: diabetic brain

Search Result 56, Processing Time 0.025 seconds

Changes of Gangliosides Metabolism in Streptozotocin-Induced Diabetic Rats and Effect of Deer Antler (Streptozotocin 유발 당뇨병쥐 뇌에서 Gangliosides 대사 변화와 녹용의 효과)

  • 조현진;전길자
    • Biomolecules & Therapeutics
    • /
    • v.2 no.3
    • /
    • pp.223-228
    • /
    • 1994
  • In this study, we examined gangliosides from streptozotocin-induced diabetic rat brain. To obtain the diabetic rat brain, we sacrified the rat three days after injecting the streptozotocin into venus in tail. We measured blood glucose level according to Somogy-Nelson method and measured insulin level using $^{125}$ I-insulin RIA kit. The gangliosides were extracted according to Folch-Suzuki method from the rat brain. We also examined the effect of major lipid components extracted from deer antler on diabetic rat brain. The results showed that the major lipids components lowered both blood glucose and insulin level in normal rat. However only the blood glucose level in diabetic rat was lowered with major lipid components. In diabetic rat brain, gangliosides metabolism were changed. The amount of GMla was increased while GDla, GDlb, and GTlb were not synthesized. Furthermore, undefined ganglioside was found. In major lipid component-treated diabetic rat brain, the ganglioside metabolism proceeded as same as the normal rat. On the contrary, in bovine brain gangliosides-treated diabetic rat brain, the gangliosides metabolism was not recovered to normal one.

  • PDF

Chronic Opium Treatment Can Differentially Induce Brain and Liver Cells Apoptosis in Diabetic and Non-diabetic Male and Female Rats

  • Asiabanha, Majid;Asadikaram, Gholamreza;Rahnema, Amir;Mahmoodi, Mehdi;Hasanshahi, Gholamhosein;Hashemi, Mohammad;Khaksari, Mohammad
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.6
    • /
    • pp.327-332
    • /
    • 2011
  • It has been shown that some opium derivatives promote cell death via apoptosis. This study was designed to examine the influence of opium addiction on brain and liver cells apoptosis in male and female diabetic and non-diabetic Wistar rats. This experimental study was performed on normal, opium-addicted, diabetic and diabetic opium-addicted male and female rats. Apoptosis was evaluated by TUNEL and DNA fragmentation assays. Results of this study showed that apoptosis in opium-addicted and diabetic opium-addicted brain and liver cells were significantly higher than the both normal and diabetic rats. In addition, we found that apoptosis in brain cells of opium-addicted and diabetic opium-addicted male rats were significantly higher than opium-addicted and diabetic opium-addicted female, whereas apoptosis in liver cells of opium-addicted and diabetic opium-addicted female rats were significantly higher than opium-addicted and diabetic opium-addicted male. Overall, these results indicate that opium probably plays an important role in brain and liver cells apoptosis, therefore, leading neurotoxicity and hepatotoxicity. These findings also in away possibly means that male brain cells are more susceptible than female and interestingly liver of females are more sensitive than males in induction of apoptosis by opium.

Effects of Dandelion on Oxygen Free Radical Generating and Scavenging System of Brain in Streptozotocin-Induced Diabetic Rats (서양민들레가 Streptozotocin으로 유발한 당뇨 횐쥐의 뇌조직 중 유해 활성산소 생성 및 제거 효소계에 미치는 영향)

  • 김명주;조수열
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.3
    • /
    • pp.500-505
    • /
    • 2002
  • Many studies have shown that hyperglycemia leads to an increase of lipid peroxidation in diabetic patients and animals, reflecting a rise reactive oxygen species production. It is increasingly recognized that brain is another site of diabetic organ damage. Accordingly, this study was to investigate the effect of dandelion on oxygen free radical generating and scavenging system of brain in streptozotocin (STZ)-induced diabetic rats. Male Wistar rats were divided into diabetic (control) and diabetic-dandelion supplemented groups. Dandelion was supplemented for 4 weeks with dandelion leaf and root powder (DLP, DRP) or dandelion leaf and root water extract (DLW, DRW) based on 11.4 g of raw dandelion/kg diet. Diabetes was induced by single injection STZ (55 mg/kg B.W., i.p.)in a citrate buffer. Oxygen free radical generating enzymes, cytochrome P-450, amino-pyrine N-demethylase, aniline hydroxylase and xanthine oxidase, were lowered in dandelion supplemented-groups compared to the control group. Superoxide dismutase, catalase and gluthathione peroxidase activities of brain were also lower in dandelion leaf and root supplemented-group than in the control group, whereas glutathione S-transferase activity and gluthathione content were increased in dandelion supplemented-groups compared to the control group. With regard to the lipid peroxidation products, the malondialdehyde content of brain was lower in dandelion supplemented groups. Therefore, it could be suggested that powder and water extract of dandelion leaf or root are beneficial in preventing diabetic complication from lipid peroxidation and free radical in brain of diabetic rat brain.

Effects of cinnamic acid on memory deficits and brain oxidative stress in streptozotocin-induced diabetic mice

  • Hemmati, Ali Asghar;Alboghobeish, Soheila;Ahangarpour, Akram
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.3
    • /
    • pp.257-267
    • /
    • 2018
  • The present study aimed to evaluate the cinnamic acid effect on memory impairment, oxidative stress, and cholinergic dysfunction in streptozotocin (STZ)-induced diabetic model in mice. In this experimental study, 48 male Naval Medical Research Institute (NMRI) mice (30-35 g) were chosen and were randomly divided into six groups: control, cinnamic acid (20 mg/kg day, i.p.), diabetic, and cinnamic acid-treated diabetic (10, 20 and 40 mg/kg day, i.p.). Memory was impaired by administering an intraperitoneal STZ injection of 50 mg/kg. Cinnamic acid was injected for 40 days starting from the 21st day after confirming STZ-induced dementia to observe its therapeutic effect. Memory function was assessed using cross-arm maze, morris water maze and passive avoidance test. After the administration, biochemical parameters of oxidative stress and cholinergic function were estimated in the brain. Present data indicated that inducing STZ caused significant memory impairment, whereas administration of cinnamic acid caused significant and dose-dependent memory improvement. Assessment of brain homogenates indicated cholinergic dysfunction, increase in lipid peroxidation and reactive oxygen species (ROS) levels, and decrease in glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) activities in the diabetic group compared to the control animals, whereas cinnamic acid administration ameliorated these indices in the diabetic mice. The present study demonstrated that cinnamic acid improves memory by reducing the oxidative stress and cholinergic dysfunction in the brain of diabetic mice.

Red Wine Prevents Brain Oxidative Stress and Nephropathy in Streptozotocin-induced Diabetic Rats

  • Montilla, Pedro;Barcos, Montserrat;Munoz, Maria C.;Bujalance, Inmaculada;Munoz-Castaneda, Juan R.;Tunez, Isaac
    • BMB Reports
    • /
    • v.38 no.5
    • /
    • pp.539-544
    • /
    • 2005
  • We have studied the effects of red wine on brain oxidative stress and nephropathy in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced in Wistar rats with a single intraperitonally injection of STZ (50 mg/kg). Two weeks before and four weeks after injection, red wine was given orally in both normal and diabetic rats. Blood samples were taken from the neck vascular trunk in order to determine the glucose, triglycerides, total cholesterol, HDL-cholesterol (HDL-c), atherogenic index (AI), total protein, blood urea nitrogen (BUN), creatinine, insulin, lipid peroxidation products, reduced glutathione (GSH) and superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities. As well, we estimated the lipid peroxidtion, GSH and SOD, GSH-Px and catalase activities in brain and renal homogenates, and the excretion of albumin, proteins and glucose in urine over 24 h period. The administration of STZ caused significant increases in levels of glycosuria, proteinuria, albuminuria, glycemia, total cholesterol and AI, as well as in lipid peroxidation products in the brain, plasma and kidney, whereas it decreased the GSH content and SOD, GSH-Px and catalase activities. Treatment with red wine significantly prevented the changes induced by STZ. These data suggested that red wine has a protective effect against brain oxidative stress, diabetic nephropathy and diabetes induced by STZ, as well as it protects against hypercholesterolemia and atherogenic risk.

Organ-Specific Expression Profile of Jpk: Seeking for a Possible Diagnostic Marker for the Diabetes Mellitus

  • Lee Eun Young;Park Hyoung Woo;Kim Myoung Hee
    • Biomedical Science Letters
    • /
    • v.10 no.4
    • /
    • pp.385-389
    • /
    • 2004
  • A novel gene Jpk, originally isolated as a trans-acting factor associating with the position-specific regulatory element of murine Hox gene has been reported to be expressed differentially in the liver of diabetic animals. Therefore, in an attempt to develop a possible diagnostic marker and/or new therapeutic agent for the Diabetes Mellitus, we analysed the expression pattern of Jpk among organs of normal and diabetic Sprague-Dawley (SD) rats. Total RNAs were isolated from each organs (brain, lung, heart, liver, spleen, kidney, muscle, blood, and testis) of diabetic and normal rats in both normal feeding and after fasting condition. And then RT (reverse transcription) PCR has been performed using Jpk­specific primers. The Jpk gene turned out to be expressed in all organs tested, with some different expression profiles among normal and diabetes, though. Upon fasting, Jpk expressions were reduced in all organs tested except kidney, muscle and brain of normal rat. Whereas in diabetes, Jpk expressions were increased in all organs except heart, muscle and testis when fasted. Compared to the normal rat, the Jpk expression level in blood was remarkably upregulated (about 15-30times) in diabetic rat whether in normal feeding or fasting conditon, suggesting that the Jpk could be a candidate gene for the possible blood diagnostic marker for the Diabetes Mellitus.

  • PDF

Effect of Green Tea Catechin on the Microsomal Mixed Function Oxidase System of Kidney and Brain in Streptozotocin-Induced Diabetic Rats (Streptozotocin 유발 당뇨쥐의 신장 및 뇌조직에서의 Microsomal Mixed Function Oxidase System에 미치는 녹차 Catechin의 영향)

  • 이순재;신주영;차복경
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.2
    • /
    • pp.319-325
    • /
    • 1998
  • The purpose of this study was to investigate the effect of green tea catechin on microsomal mixed function oxidase(MFO) system of kidney and brain in streptozotocin(STZ) induced diabetic rats. Sprague-Dawley male rats weighing 140$\pm$10g were randomly assigned to one control and three STZ-diabetic groups. Diabetic groups wer classified to DM-0C(catechin 0%/kg diet), DM-0.5C (catechin 0.5%/kg diet), and DM-1.0C(catechin 1%/kg diet) according to the level of catechin supplementation. Diabetes were experimentally induced by intravenous administration of 55mg/kg body weight of STZ in citrate buffer(pH 4.3) after 4 weeks feeding of three experimental diets. Animals were sacrificed at the sixth day of diabetic state. The contents of cytochrome P450 in kidney were increased by 77, 42, 49% in DM-0C, DM-0.5C and DM-1.0C groups, respectively, than normal group. The contents of cytochrome P450 in brain were increased by 43% in DM-0C group than normal group, but those of DM-0.5C and DM-1.0C groups were similar to that of normal group. The contents of cytochrome b5 in kidney were increased by 78, 38, 49% in DM-0C, DM-0.5C and DM-1.0C groups, respectively, than normal group. Meanwhile, the contents of cytochrome b5 in brain were not significantly different among all groups. The activities of NADPH-cytochrome P450 reductase in kidney of DM-group were increased by 27% than normal group, but those of DM-0.5C and DM-1.0C groups were 13 and 15% lower than that of DM-0C group. The activities in brain were also increased by 31% in DM-0C group, but those of DM-0.5C and DM-1.0C groups were similar to than of normal group. Levels of TBARS (thiobarbituric acid reactive substance) in kidney were increased by 147, 60 and 59% in DM-0C, DM-0.5C, and DM-1.0C groups, respectively, compared with normal group, but those of DM-0.5C and DM-1.0C groups were 36, 35% lower than that of DM-0C group. Meanwhile, the levels of TBARS in brain were not significantly different among four groups. These results indicate that dietary catechins in green tea play a powerful antioxidant role in reducing the lipid peroxidation enhanced by activation of MFO system in STZ-induced diabetes.

  • PDF

Effect of Compositae Plants on Protein Levels in Streptozotocin-induced Diabetic Rats

  • Han, Hye-Kyoung;Kim, Gun-Hee
    • Food Quality and Culture
    • /
    • v.3 no.1
    • /
    • pp.45-48
    • /
    • 2009
  • The investigation assessed the influence of Compositae plants consumption on the protein profile in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced in Sprague-Dawley rats by injection of STZ (45 mg/kg body weight) into tail vein. The rats were randomly assigned to five groups: normal and STZ-control fed an AIN-93 diet, and groups whose diets were supplemented with 10% Compositae powder containing Artemisia iwayomogi (A. iwayomogi), Atractylodes lancea (A. lancea) or Taraxacum mongolicum (T. mongolicum). To observe the effects of Compositae plants in the animal model, the levels of protein in liver, kidney, lung, pancreas, and brain were determined after 4 weeks. The level of protein in kidney increased significantly in rats receiving the A. iwayomogi- and T. mongolicum-supplemented diet compared to the STZ-control group. The level of protein in lung was increased significantly in the A. iwayomogi-supplemented group. Blood glucose level correlated well with brain protein level but did not correlate with other protein levels. Also, blood glucose correlated inversely with kidney, lung and brain protein levels. It is suggested that supplementation with A. iwayomogi in diabetic rats leads elevates protein in kidney and lung.

  • PDF

Acebutolol, a Cardioselective Beta Blocker, Promotes Glucose Uptake in Diabetic Model Cells by Inhibiting JNK-JIP1 Interaction

  • Li, Yi;Jung, Nan-Young;Yoo, Jae Cheal;Kim, Yul;Yi, Gwan-Su
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.458-463
    • /
    • 2018
  • The phosphorylation of JNK is known to induce insulin resistance in insulin target tissues. The inhibition of JNK-JIP1 interaction, which interferes JNK phosphorylation, becomes a potential target for drug development of type 2 diabetes. To discover the inhibitors of JNK-JIP1 interaction, we screened out 30 candidates from 4320 compound library with In Cell Interaction Trap method. The candidates were further confirmed and narrowed down to five compounds using the FRET method in a model cell. Among those five compounds, Acebutolol showed notable inhibition of JNK phosphorylation and elevation of glucose uptake in diabetic models of adipocyte and liver cell. Structural computation showed that the binding affinity of Acebutolol on the JNK-JIP1 interaction site was comparable to the known inhibitor, BI-78D3. Our results suggest that Acebutolol, an FDA-approved beta blocker for hypertension therapy, could have a new repurposed effect on type 2 diabetes elevating glucose uptake process by inhibiting JNK-JIP1 interaction.

Effect or Cornus officinalis Sieb. et Zuccha Extracts on Physiological and Antioxidative Activities in Streptozotocin Induced Diabetic Rats

  • Lee, Yoon-Ah;Heo, Ye-Na;Moon, Hae-Yeon
    • Biomedical Science Letters
    • /
    • v.12 no.4
    • /
    • pp.355-359
    • /
    • 2006
  • This investigation was performed to study the antioxidant activities of Cornus officinalis Sieb extracts and the effect of Cornus officinalis Sieb extracts on glucose, lipid metabolism in diabetic rats. DPPH free radical scavanging activity and superoxide anion radical scavenging of Cornus officinalis Sieb extracts were 94.7% and 92.1%, respectively. Streptozotocin (45 mg/kg body weight, i.p.) induced diabetic rats showed a significant increases of plasma glucose, triglyceride and total cholesterol, concomitantly significant decrease of plasma high density lipoprotein. Glutathione level were decrease in cytosol of liver, lung and brain tissue of rats. Lipid peroxide were increase in microsome of liver cells. Group 1 and 2 were treated with Cornus officinalis Sieb extracts 200 mg/kg body weight and 100 mg/kg body weight for 24 days, individually. Group 1 and 2 rats showed decreased plasma glucose, triglyceride, total cholesterol and lipid peroxide in microsome of liver, and increased plasma high density lipoprotein and glutathione in cytosol of liver, lung and brain. The result suggest that Cornus officinalis Sieb extracts may normalize the Impaired antioxiants status in streptozotocin induced diabetic rats. Cornus officinalis Sieb extracts were used to improve the imbalance between free radicals and antioxidant system due to the diabetes.

  • PDF