• Title/Summary/Keyword: dgps : signal

Search Result 68, Processing Time 0.026 seconds

Analysis and signal stability measurement for DGPS radio wave propagation (DGPS 전파 신호의 안정도 측정 및 분석)

  • Kim, Young-wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.231-236
    • /
    • 2016
  • The stability of DGPS signal in the DGPS service area was measured and the service availability according to the receiving signal strength was analyzed in this paper. Based on the effects of radio wave propagation in the seasons of winter and summer, daytime and night, the method to provide the DGPS service coverage was presented in this paper. The signal's strength of DGPS radio wave were measured at a constant distance from the DGPS reference station during a constant period. The propagation of DGPS radio wave is affected by status of ground conductivity, so the DGPS service area is dependant on the ground conductivity. To provide the stable service coverage, it is necessary to apply the adaptive power control for receiving signal's variations and the antenna design for alleviation of high elevation's radiation.

Signal Analysis Software for DGPS Station (DGPS 기준국 신호분석 소프트웨어)

  • Hwang, Ho-Yon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.2
    • /
    • pp.1-8
    • /
    • 2007
  • In this research, algorithm and software for the medium frequency signal analysis of DGPS(Differential Global Positioning System) station were developed. Based on new MF(Medium Frequency) algorithm, the software of NDGPS(National DGPS) signal analysis was developed for coverage analysis. Predicted MF propagation data from this software was compared to the measurement data for the verification of a developed MF algorithm. GIS(Geographic Information System) techniques including digital map with elevation data were used because MF propagation is closely related to ground conductivity, mountains, building intensity.

  • PDF

A study on Coverage-Prediction of the DGPS Stations in the Far East Asia (극동 아시아에 있어서 DGPS 기준국들의 Coverage 예측에 관한 연구)

  • 이회재;고광섭;정세모
    • Journal of the Korean Institute of Navigation
    • /
    • v.24 no.5
    • /
    • pp.405-415
    • /
    • 2000
  • DGPS/Radio beacons are currently being planned or installed in many countries. They offer a cost-effective way of distributing differential data to large number of users. These networks are also being deployed in South Korea, Japan, and China. Several DGPS stations among them are operating on the same frequencies. The DGPS signal based on a radio beacon in medium frequency band travels principally as a groundwave over the surface of the earth. The signal may also be received as skywaves at locations beyond about 100 km from the reference station. These skywaves interfere with groundwave signals due to fading. This factor has generally ignored in designing DGPS/Radio beacon systems. A further important factor is to reduce the coverage due to interference from other beacons on the same or adjacent frequencies. The desired signal may fade due to interaction between its skywave and groundwave components. It may degrade the accuracy of the positioning in a complex fashion. This paper estimates the coverage of Far East Asia DGPS stations which are operating on the same frequencies, which is based on the signal protection ratio and interference of the signal strength of the groundwave and skywave.

  • PDF

Propagation Delay Modeling and Implementation of DGPS beacon signal over the Spherical Earth

  • Yu, Dong-Hui;Weon, Sung-Hyun
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.4
    • /
    • pp.295-299
    • /
    • 2007
  • This paper presents the ASF(Additional Secondary Factor) modeling of DGPS beacon signal. In addition to DGPS's original purpose, the feasibility to utilize DGPS system for timing and navigation has been studied. For timing and navigation, the positioning system must know the accurate time delay of signal traveling from the transmitter to receiver. Then the delay can be used to compute the user position. The DGPS beacon signal transmits the data using medium frequency, which travels through the surface and cause the additional delay rather than the speed of light according to conductivities and elevations of the irregular terrain. We introduce the modeling of additional delay(ASF) and present the results of implementation. The similar approach is Locan-C. Loran-C has been widely used as the maritime location system and was enhanced to E-Loran(Enhanced Loran). E-Loran system uses the ASF estimation method and is able to provide the more precise location service. However there was rarely research on this area in Korea. Hence, we introduce the ASF and its estimation model. With the comparison of the same condition and data from the original Monteath model and ASF estimation data of Loran system respectively, we guarantee that the implementation is absolutely perfect. For further works, we're going to apply the ASF estimation model to Korean DGPS beacon system with the Korean terrain data.

DGPS service analysis in the korean coastal ferry route (국내 연안 여객선 항로에서의 DGPS 서비스 분석)

  • Kim, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2073-2078
    • /
    • 2014
  • Based on the DGPS radio wave measurement in the coast of the yellow-sea, south-sea and east-sea, the DGPS service regions in the korean coastal ferry route are analyzed in this paper. The impact of obstacles on the propagation due to the archipelago and island regions are measured and analyzed in the point of service region. The ocean-based DGPS reference stations provide the wide DGPS ocean service regions with signal strength more than $40dB{\mu}V/m$ and signal-to-noise ratio more than 10 dB. Based on the overlapping of the service regions between the DGPS reference stations, the DGPS services with good quality are provided in the coastal ferry route segments. In case of regions where the propagation obstacles are scattered, the increasingly good service can be provided under conditions of output power reinforcement and antenna efficiency enhancement.

Service analysis and propagation measurement for DGPS land-based reference station in Korea (국내 DGPS 내륙 기준국 전파 측정 및 서비스 분석)

  • Jeon, Joong Seong;Kim, Young Wan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.437-443
    • /
    • 2014
  • Based on the radio wave propagation measurement of DGPS land-based reference stations, the DGPS service coverage and signal quality in the receiving points are analyzed in this paper. The DGPS signal strength and SNR in the receiving point are measured in the winter and summer season, respectively. In case of DGPS reference station that can not provide the designed service coverage, the solution to improve the service coverage is presented in this paper. Almost all DGPS reference station except reference station with low ground conductivity or mountainous terrain provide the DGPS service coverages of 80% or more of the designed service area. The service coverages of DGPS reference stations can be improved to pre-designed service area in case of installation management of DGPS site on the plain terrain and good ground conductivity. It is necessary to get the high efficiency of transmitting antenna to improve the service area.

Design of LBSs Using DGPS and Digital Mobile Broadcasting System

  • Kwon, Seong-Geun
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.2
    • /
    • pp.22-28
    • /
    • 2013
  • In this paper, new LBS (location based service) are proposed using conventional DMB (digital multimedia/mobile broadcasting) system. LBS applications are proposed that can be suitable for the subway and ground transportation based on S-DMB (satellite-DMB) and T-DMB (terrestrial-DMB) respectively. In the shaded area such as subway, the broadcasting signal transmitted from the satellite of S-DMB system should be retransmitted by the earth repeater called the gap filler and each gap filler has its own identification value called the gap filler ID which introduces the area in which the gap filler was installed. Therefore, the LBS can be implemented by using the gap filler ID of S-DMB on the subway in which the GPS (global positioning system) can't be received. Unlike the LBS on the subway, the combination of T-DMB and DGPS (differential GPS) will be introduced as a way for ground transportation. Generally, DGPS has been designed to compensate the position value calculated from the GPS signal so that positioning error of about 1 meter can be obtained by using DGPS information. T-DMB system transmitting DGPS signal will be expected to be commercial in Korea and, if using DGPS information transmitted through T-DMB network, LBS with more precise positioning than GPS alone can be implemented in the ground vehicles.

3-Dimensional Positioning Using DGPS/DGLONASS (DGPS/DGLONASS에 의한 3차원 위치결정)

  • 강준묵;박정현;이은수
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.4
    • /
    • pp.317-325
    • /
    • 2001
  • Although GPS has proven to be efficient in the fields of navigation and surveying, it has many problems of positioning in downtown areas. Therefore, if GPS is combined with GLONASS which is similar to GPS in its positioning and signal system, it is expected that accuracy will be improved. However, we should address certain problems that exist related to the coordinate, time, and signal system between the two. The purpose of this study is to develop a GPS/GLONASS combination program by considering the properties of GPS and GLONASS and to solve the problems related to differences in the coordinates system and signal system. It is also to present the efficiency of the program in navigation and geographic information through analyzing 3D positioning accuracy by GPS/GLONASS combination with an application experiment. As a result of this study, the accuracy of the DGPS/DGLONASS positioning program corresponded to that of commercial program, and that's accuracy was better than that of DGPS. Especially, the acquisition of navigation and geographic information was possible by DGPS/DGLONASS combination in downtown area where the continuous 3D positioning is impossible by DGPS only.

  • PDF

Analysis and measurement of service area of ocean-based DGPS reference station in Korea (국내 해상 DGPS 기준국의 서비스 영역 측정 및 분석)

  • Kim, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1255-1261
    • /
    • 2014
  • Based on the radio wave measurement of korean ocean-based DGPS by season, in this paper, the service coverages of ocean-based DGPS reference stations were analyzed according to the climate and season. The signal strengths and signal-to-noise ratios in the land service areas that are provided by ocean-based DGPS reference stations were measured. The ocean-based DGPS reference station except reference stations on the mountainous terrain and the low ground conductivity provide more than 68% service area in comparison with the designed land service coverage providing by the ocean-based DGPS reference stations. To provide the designed service area that is unrelated to a season, it is necessary to install and operate the DGPS reference station with good ground conductivity and high efficiency antenna. Also, the poor service regions which is generated by obstacles of electric wave on pathway can be resolved by the double service area providing by land-based DGPS reference stations.

Propagation Analysis of DGPS Antenna for Radial Ground and Obstacle

  • Kim, Young-Wan
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.363-368
    • /
    • 2011
  • The DGPS transmits the enhancement signal to GPS using the medium frequency band. The NDGPS service that covers the Korean peninsula has been started since 2009. The service area of ocean-based DGPS(maritime-DGPS) reference stations covers the 100NM, but land-based DGPS(land-DGPS) covers 80km service area less than that of maritime DGPS. The DGPS's antenna has the top-loaded monopole antenna type. Top-loaded monopoles are the logical antennas to be used in order to get a low profile antenna and a performance according to the broadcaster and communication needs. The antenna needs to get the ground plane with good conductivity characteristics and flat ground plane without obstacle near to the transmitting antenna. In this paper, the radiation characteristics of an equivalent MF antenna are analyzed in view points of the ground conductivity and the ground plane with obstacle near to the antenna.