• 제목/요약/키워드: devolatilization

검색결과 60건 처리시간 0.022초

고압 석탄 분류층 가스화기 전산유동에서 탈휘발 모델의 영향 평가 (Evaluation of devolatilization models in CFD for high-pressure entrained flow coal gasifier)

  • 예인수;박상빈;류창국;박호영;김봉근
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.37-40
    • /
    • 2012
  • In an entrained flow coal gasifier, predicting the reaction behavior of pulverized coal particles requires detailed information on devolatilization, char gasification, gaseous reactions, turbulence and heat transfer. Among the input parameters, the rate of devolatilization and the composition of volatile species are difficult to determine by experiments due to a high pressure (~40 bar) and temperature (${\sim}1500^{\circ}C$). This study investigates the effect of devolatilization models on the reaction and heat transfer characteristics of a 300 MWe Shell coal gasifier. A simplified devolatilization model and advanced model based on Flashchain were evaluated, which had different volatiles composition and devolatilization rates. It was found that the tested models produce similar flow and reaction trends, but the simplified model slightly over-predict the temperature and wall heat flux near the coal inlets.

  • PDF

DTF 내 미분탄 휘발화 모델에 관한 수치적 연구 (Numerical Study on the Devolatilization models of Pulverized Coal in DTF)

  • 김진남;김호영
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제25회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.173-184
    • /
    • 2002
  • In order to evaluate the devolatilization models of pulverized coal, various devolatilization models are examined for the numerical analysis of Drop Tube Furnace.The results of analysis are compared with the experimental results. A numerical study was conducted to explore the sensitivities of the predictions to variation of the model parameters. It helps to elucidate the source of the discrepancies. Three different wall temperature conditions of the DTF, 1100, 1300 and $1500^{\circ}C$ were considered in this analysis. Two fuels are U.S.A. Alaska coal and Australia Drayton coal. The results of analysis with constant rate model, single kinetic rate model and two competing rate modes well presented fast volatile matter release in the early devolatilization. However, in the latter devolatilization they did not coincide with experimental results which presented tardy volatile matter release on account of pyrolysis of high molecular substance. On the other hand, the results of analysis with DAEM(Distribute Activation Energy Model) coincided with experiment al results in overall devolatilization.

  • PDF

A Numerical Study on Coal Devolatilization of Bituminous Coal Using CPD Model

  • 김량균;이병화;전창환;장용준;송주헌
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2898-2903
    • /
    • 2008
  • The coal considerably is the energy resource which is important with the new remarking energy resource. The coal conversion has two processes which are coal devolatilization and char oxidation. Coal devolatilization is important because it describes up to 70% weight loss and has been shown that nitrogen contribute 60 to 80% of the total NOx produced. The chemical percolation devolatilization(CPD) model is used here to describe coal devolatilization. The model was developed to describe coal devolatilization behavior of rapidly heated coal based on characteristics of the chemical structure of the parent coal. This paper describes CPD model in detail and makes an analysis of Shenhua coal(bituminous) which is used calculated 13-C NMR(carbon-nuclear magnetic resonance).

  • PDF

상용 미분탄 보일러 연소해석에서 석탄 탈휘발 모델 및 난류반응속도의 영향 평가 (Effects of coal devolatilization model and turbulent reaction rate in numerical simulations of a large-scale pulverized-coal-fired boiler)

  • 양주향;김정은;류창국
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.59-62
    • /
    • 2014
  • Predicting coal combustion by computational fluid dynamics (CFD) requires a combination of complicated flow and reaction models for turbulence, radiation, particle flows, heterogeneous combustion, and gaseous reactions. There are various levels of models available for each of the phenomena, but the use of advanced models are significantly restricted in a large-scale boiler due to the computational costs and the balance of accuracy between adopted models. In this study, the influence of coal devolatilization model and turbulent mixing rate was assessed in CFD for a commercial boiler at 500 MWe capacity. For coal devolatilization, two models were compared: i) a simple model assuming single volatile compound based on proximate analysis and ii) advanced model of FLASHCHAIN with multiple volatile species. It was found out that the influence of the model was observed near the flames but the overall gas temperature and heat transfer rate to the boiler were very similar. The devolatilization rate was found not significant since the difference in near-flame temperature became noticeable when it was multiplied by 10 or 0.1. In contrast, the influence of turbulent mixing rate (constant A in the Magnussen model) was found very large. Considering the heat transfer rate and flame temperature, a value of 1.0 was recommended for the rate constant.

  • PDF

CPD 모델을 이용한 국내수입탄 성상에 따른 탈휘발 특성에 관한 실험 및 해석적 연구 (An Experimental and Numerical Study on the Characteristics of Devolatilization Process for Coals Utilized in Korea Using CPD Model)

  • 김량균;이병화;전충환;송주헌;장영준
    • 대한기계학회논문집B
    • /
    • 제33권8호
    • /
    • pp.613-621
    • /
    • 2009
  • Coal is the energy resource which is important with the new remarking energy resource. Coal combustion produces more NOx per unit of energy than any other major combustion technology. Pollutant emission associated with coal combustion will have a huge impact on the environment. Coal conversion has three processes which are drying, coal devolatilization and char oxidation. Coal devolatilization process is important because it has been shown that HCN which is converted from volatile N contributes 60 to 80% of the total NOx produced. This paper addresses mass release behavior of char, tar, gas and HCN in an experiment of Laminar Flow Reactor with two coals such as Roto middle coal (Sub-bituminous) and Anglo coal (Bituminous). The experiment is compared with the data predicted by CPD model for mass release of HCN about Roto south, Indominco, Weris creek and China orch coals. The results show that HCN increases as a function of decreasing the ratio of fixed carbon(FC)/ volatile matter(VM of the coals contain.)

고체 연료의 유동층 연소 - 시험 연소로 특성 및 실험 인자 설정 (Solid fuel combustion in a fluidized bed - Characteristics of a lab-scale combustor and experimental parameters)

  • 최진환;박영호;최상민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제21회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.236-245
    • /
    • 2000
  • A laboratory scale fluidized bed reactor was developed to treat the combustion characteristics of some fuels (wood, paper sludge, refuse derived fuel). The aims were to introduce the means of experiment and interpretation of the results and finally determine the particle characteristics on the pyrolysis and combustion process of the fuel. A single particle combustion process in the fluidized bed was closely observed. Understanding experimental facility characteristics and determining parameters were also carried out. The fuel combustion processes were observed by carbon conversion rate, recovery and mean carbon conversion time. They were estimated with the CO, $CO_2$ gas concentration monitored at the exit of the combustor. Fuel drying and pyrolysis process were governed by temperature distribution in the fuel particle. There was a significant overlap of the drying and devolatilization. However, transition process from devolatilization to char combustion seemed to be determined by mechanical solidity of the fuel particle after devolatilization process.

  • PDF

CPD 모델을 활용한 석탄 가스화 과정 중 탄종에 따른 휘발분 배출에 관한 이론해석연구 (A Theoretical Analysis on Volatile Matter Release from Different Coals Using CPD Model During a Coal Gasification)

  • 김량균;이병화;전충환;장영준;송주헌
    • 대한기계학회논문집B
    • /
    • 제33권12호
    • /
    • pp.1000-1006
    • /
    • 2009
  • Integrated Coal Gasification Combined Cycle (IGCC) power plants have been developed to reduce carbon dioxide emissions and to increase the efficiency of electricity generation. A devolatilization process of entrained coal gasification is predicted by CPD model which could describe the devolatilization behavior of rapidly heated coal based on the chemical structure of the coal. This paper is intended to compare the mass release behavior of char, tar and gas(CO, $CO_2,\;H_2O,\;CH_4$) for three different coals. The influence of coal structure on gas evolution is examined over the pressure range of 10${\sim}$30atm.

유동층 반응기에서의 목질계 바이오매스 입자의 탈휘발 예측 모델 (A Devolatilization Model of Woody Biomass Particle in a Fluidized Bed Reactor)

  • 김광수;;이정우;이은도;최영태
    • Korean Chemical Engineering Research
    • /
    • 제50권5호
    • /
    • pp.850-859
    • /
    • 2012
  • 목질계 바이오매스의 가스화 및 열분해 공정에서 탈휘발 과정은 매우 중요한 메커니즘 중의 하나이며, 공정 설계 시 반드시 반영되어야 한다. 바이오매스 입자의 탈휘발에 대한 많은 경험식이 존재하지만, 다양한 특성의 바이오매스를 특정 실험조건에서 도출한 경험식에 의존하기는 힘들다. 본 연구는 유동층 가스화 분위기에서의 바이오매스 단일 입자의 탈휘발 과정을 수학적 모델을 통하여 예측하였다. 모델은 다양한 형태의 입자를 구형태로 변환한 뒤, 입자 내부의 drying, shrinkage, heat generation을 고려하여 1차원으로 해석하였다. 또한 탈휘발 과정에 영향을 주는 입자의 크기, 반응온도, 초기 수분함량, 열전달 계수, 반응모델 등 다양한 변수에 대한 변화를 관찰하였다. 탈휘발 완료시간은 입자의 크기가 커질수록, 초기 수분함량이 높을수록 증가하였으며, 반응온도가 높을수록 선형적으로 감소하였다. 또한 외부 열전달 계수가 300 $W/m^2K$ 이상일 경우 큰 변화는 나타나지 않았지만, 입자의 크기가 작을수록 외부 열전달 계수의 영향은 크게 나타났다. 모델 예측값과 문헌의 실험값은 대체로 비슷한 경향을 나타내었으며, 오차 ${\pm}10%$ 이내로 근접하였다.

도시 폐기물 폐목재의 탈휘발 특성 (Devolatilization Characteristics of Municipal Wood Waste)

  • 최정후;김민하;조미영;박기훈;장은진;이종민
    • Korean Chemical Engineering Research
    • /
    • 제48권1호
    • /
    • pp.16-19
    • /
    • 2010
  • 질소 분위기의 고온($350{\sim}900^{\circ}C$)의 등온 열중량 분석기를 사용하여 도시 폐기물 폐목재의 탈휘발 특성을 측정 및 고찰하였다. 탈휘발은 온도범위 $250{\sim}350^{\circ}C$에서 주로 발생하였다. 휘발분의 양은 온도가 증가할수록 증가하였으나, $527^{\circ}C$ 이상에서는 일정해졌다. 화학반응 율속의 shrinking particle model로 탈휘발반응을 잘 표현할 수 있었다. 탈휘발 활성화 에너지는 13.1~18.5 kJ/g mol이었다.