• Title/Summary/Keyword: deviation of position

Search Result 517, Processing Time 0.039 seconds

Improvement of GPS positioning accuracy by static post-processing method (정적 후처리방식에 의한 GPS의 측위정도 개선)

  • 김민선;신현옥
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.251-261
    • /
    • 2003
  • To measure the GPS position accuracy and its distribution according to the length of the baseline, 30 minutes to 24 hours observations at the fixed location were conducted with two GPS receivers (Ll, 12 channels) on May 29 to June 2, 2002. The GPS data received at the reference station, the rover station and the ordinary times GPS observation station operated by the National Geography Institute in Korea were processed in kinematic and static post-processing methods with a post -processing software. The results obtained are summarized as follows: 1. The number of the satellite that could be observed continuously more than six hours was 16 and most of these satellites were positioned at east-west direction on May 31, 2002. The number of the satellite observed and the geometric dilution of precision (GDOP) determined by the average of every 10 minute for the day were 8 and 3.89, respectively. 2. Both the average GPS positions before and after post-processing were shifted (standalone: 1.17 m, post -processing: 0.43m) to the south and west. The twice distance root mean square (2drms) measured with standalone was 6.65m. The 2drms could be reduced to 33.8% (standard deviation 0=17.2) and 5.3% (0=2.2) of standalone by the kinematic and the static post-processing methods, respectively. 3. The relationship between the length of the baseline x (km) and the 2drms y (m) obtained by the static post-processing method was y=0.00l6x+0.006 $(R^2=0.87)$. In the case of the positioning with the static post-processing method using the GPS receiver, it was found that a positioning within 20cm 2drms was possible when the length of the baseline was less than 100km and the receiving time of the GPS is more than 30 minutes.

Analysis of Set-up Errors during CT-scan, Simulation, and Treatment Process in Breast Cancer Patients (유방암 환자의 모의치료, CT 스캔 및 치료 과정에서 발생되는 준비 오차 분석)

  • Lee, Re-Na
    • Radiation Oncology Journal
    • /
    • v.23 no.3
    • /
    • pp.169-175
    • /
    • 2005
  • Purpose: Although computed tomography (CT) simulators are commonly used in radiation therapy department, many Institution still use conventional CT for treatments. In this study the setup errors that occur during simulation, CT scan (diagnostic CT scanner), and treatment were evaluated for the twenty one breast cancer patients. Materials and Methods: Errors were determined by calculating the differences in isocenter location, SSD, CLD, and locations of surgical clips implanted during surgery. The anatomic structures on simulation film and DRR image were compared to determine the movement of isocenter between simulation and CT scan. The isocetner point determined from the radio-opaque wires placed on patient's surface during CT scan was moved to new position if there was anatomic mismatch between the two images Results: In 7/21 patients, anatomic structures on DRR Image were different from the simulation Image thus new isocenter points were placed for treatment planning. The standard deviations of the diagnostic CT setup errors relative to the simulator setup in lateral, longitudinal, and anterior-posterior directions were 2.3, 1.6, and 1.6 mm, respectively. The average variation and standard deviation of SSD from AP field were 1.9 mm and 2.3 mm and from tangential fields were 2.8 mm and 3.7 mm. The variation of the CLD for the 21 patients ranged from 0 to 6 mm between simulation and DRR and 0 to 5 mm between simulation and treatment. The group systematic errors analyzed based on clip locations were 1.7 mm in lateral direction, 2.1 mm in AP direction, and 1.7 mm in SI direction. Conclusion: These results represent that there was no significant differences when SSD, CLD, clips' locations and isocenter locations were considered. Therefore, it is concluded that when a diagnostic CT scanner is used to acquire an image, the set-up variation is acceptable compared to using CT simulator for the treatment of breast cancer. However, the patient has to be positioned with care during CT scan in order to reduce the setup error between simulation and CT scan.

Health Assessment of the Nakdong River Basin Aquatic Ecosystems Utilizing GIS and Spatial Statistics (GIS 및 공간통계를 활용한 낙동강 유역 수생태계의 건강성 평가)

  • JO, Myung-Hee;SIM, Jun-Seok;LEE, Jae-An;JANG, Sung-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.2
    • /
    • pp.174-189
    • /
    • 2015
  • The objective of this study was to reconstruct spatial information using the results of the investigation and evaluation of the health of the living organisms, habitat, and water quality at the investigation points for the aquatic ecosystem health of the Nakdong River basin, to support the rational decision making of the aquatic ecosystem preservation and restoration policies of the Nakdong River basin using spatial analysis techniques, and to present efficient management methods. To analyze the aquatic ecosystem health of the Nakdong River basin, punctiform data were constructed based on the position information of each point with the aquatic ecosystem health investigation and evaluation results of 250 investigation sections. To apply the spatial analysis technique, the data need to be reconstructed into areal data. For this purpose, spatial influence and trends were analyzed using the Kriging interpolation(ArcGIS 10.1, Geostatistical Analysis), and were reconstructed into areal data. To analyze the spatial distribution characteristics of the Nakdong River basin health based on these analytical results, hotspot(Getis-Ord Gi, $G^*_i$), LISA(Local Indicator of Spatial Association), and standard deviational ellipse analyses were used. The hotspot analysis results showed that the hotspot basins of the biotic indices(TDI, BMI, FAI) were the Andong Dam upstream, Wangpicheon, and the Imha Dam basin, and that the health grades of their biotic indices were good. The coldspot basins were Nakdong River Namhae, the Nakdong River mouth, and the Suyeong River basin. The LISA analysis results showed that the exceptional areas were Gahwacheon, the Hapcheon Dam, and the Yeong River upstream basin. These areas had high bio-health indices, but their surrounding basins were low and required management for aquatic ecosystem health. The hotspot basins of the physicochemical factor(BOD) were the Nakdong River downstream basin, Suyeong River, Hoeya River, and the Nakdong River Namhae basin, whereas the coldspot basins were the upstream basins of the Nakdong River tributaries, including Andong Dam, Imha Dam, and Yeong River. The hotspots of the habitat and riverside environment factor(HRI) were different from the hotspots and coldspots of each factor in the LISA analysis results. In general, the habitat and riverside environment of the Nakdong River mainstream and tributaries, including the Nakdong river upstream, Andong Dam, Imha Dam, and the Hapcheon Dam basin, had good health. The coldspot basins of the habitat and riverside environment also showed low health indices of the biotic indices and physicochemical factors, thus requiring management of the habitat and riverside environment. As a result of the time-series analysis with a standard deviation ellipsoid, the areas with good aquatic ecosystem health of the organisms, habitat, and riverside environment showed a tendency to move northward, and the BOD results showed different directions and concentrations by the year of investigation. These aquatic ecosystem health analysis results can provide not only the health management information for each investigation spot but also information for managing the aquatic ecosystem in the catchment unit for the working research staff as well as for the water environment researchers in the future, based on spatial information.

The Precision Test Based on States of Bone Mineral Density (골밀도 상태에 따른 검사자의 재현성 평가)

  • Yoo, Jae-Sook;Kim, Eun-Hye;Kim, Ho-Seong;Shin, Sang-Ki;Cho, Si-Man
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.1
    • /
    • pp.67-72
    • /
    • 2009
  • Purpose: ISCD (International Society for Clinical Densitometry) requests that users perform mandatory Precision test to raise their quality even though there is no recommendation about patient selection for the test. Thus, we investigated the effect on precision test by measuring reproducibility of 3 bone density groups (normal, osteopenia, osteoporosis). Materials and Methods: 4 users performed precision test with 420 patients (age: $57.8{\pm}9.02$) for BMD in Asan Medical Center (JAN-2008 ~ JUN-2008). In first group (A), 4 users selected 30 patient respectively regardless of bone density condition and measured 2 part (L-spine, femur) in twice. In second group (B), 4 users measured bone density of 10 patients respectively in the same manner of first group (A) users but dividing patient into 3 stages (normal, osteopenia, osteoporosis). In third group (C), 2 users measured 30 patients respectively in the same manner of first group (A) users considering bone density condition. We used GE Lunar Prodigy Advance (Encore. V11.4) and analyzed the result by comparing %CV to LSC using precision tool from ISCD. Check back was done using SPSS. Results: In group A, the %CV calculated by 4 users (a, b, c, d) were 1.16, 1.01, 1.19, 0.65 g/$cm^2$ in L-spine and 0.69, 0.58, 0.97, 0.47 g/$cm^2$ in femur. In group B, the %CV calculated by 4 users (a, b, c, d) were 1.01, 1.19, 0.83, 1.37 g/$cm^2$ in L-spine and 1.03, 0.54, 0.69, 0.58 g/$cm^2$ in femur. When comparing results (group A, B), we found no considerable differences. In group C, the user_1's %CV of normal, osteopenia and osteoporosis were 1.26, 0.94, 0.94 g/$cm^2$ in L-spine and 0.94, 0.79, 1.01 g/$cm^2$ in femur. And the user_2's %CV were 0.97, 0.83, 0.72 g/$cm^2$ L-spine and 0.65, 0.65, 1.05 g/$cm^2$ in femur. When analyzing the result, we figured out that the difference of reproducibility was almost not found but the differences of two users' several result values have effect on total reproducibility. Conclusions: Precision test is a important factor of bone density follow up. When Machine and user's reproducibility is getting better, it’s useful in clinics because of low range of deviation. Users have to check machine's reproducibility before the test and keep the same mind doing BMD test for patient. In precision test, the difference of measured value is usually found for ROI change caused by patient position. In case of osteoporosis patient, there is difficult to make initial ROI accurately more than normal and osteopenia patient due to lack of bone recognition even though ROI is made automatically by computer software. However, initial ROI is very important and users have to make coherent ROI because we use ROI Copy function in a follow up. In this study, we performed precision test considering bone density condition and found LSC value was stayed within 3%. There was no considerable difference. Thus, patient selection could be done regardless of bone density condition.

  • PDF

Evaluation of Usability Both Oblique Verification for Inserted Fiducial Marker of Prostate Cancer Patients (Fiducial Marker가 삽입된 전립선암 환자를 대상으로 한 양사방향 촬영의 유용성 평가)

  • Kim, Koon Joo;Lee, Jung Jin;Kim, Sung Gi;Lim, Hyun Sil;Kim, Wan Sun;Kang, Su Man
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.2
    • /
    • pp.123-129
    • /
    • 2013
  • Purpose: The way check the movement of the fiducial marker insertion in the treatment of patients with prostate cancer. However the existing methods of fiducial marker verification process difficult to identify the specific location of the marker behind the femur and pelvic bone. So to study the evaluation of maker match with using kilo voltage (KV) X-ray by On-board imager to both oblique verification method. Materials and Methods: Five patients were selected for rectal ballooning and inserted fiducial marker. Compare the position of the fiducial marker of reference plan 2D/2D Anterior/Posterior verification method and 2D/2D both oblique verification method. So to measurement the shift score of X, Y, Z (axis) and measure exposure dose given to patients and compare matching time. Results: 2 dimensional OBI KV X-ray imaging using two-dimensional matching image are orthogonal, so locating fiducial marker matching clear and useful DRR (digital reconstruction radiography) OBI souce angle ($45^{\circ}/315^{\circ}$) matching most useful. 2D/2D both oblique verification method was able to see clearly marker behind the pelvic bone. Also matching time can be reduced accordingly. According to the method of each matching results for each patient in each treatment fraction, X, Y, and Z axis the Mean $value{\pm}SD$ (standard deviation) is X axis (AP/LAT: $0.4{\pm}1.67$, OBLIQUE: $0.4{\pm}1.82$) mm, Y axis (AP/LAT: $0.7{\pm}1.73$, OBLIQUE: $0.2{\pm}1.77$) mm, Z axis (AP/LAT: $0.8{\pm}1.94$, OBLIQUE:$1.5{\pm}2.8$) mm. In addition, the KV X-ray source dose radiation exposure given to the patient taking average when AP/LAT matching is (0.1/2.1) cGY, when $315^{\circ}/45^{\circ}$ matching is (0.27/0.26) cGY. Conclusion: In conclusion for inserted fiducial marker of prostate cancer patients 2D/2D both oblique matching method is more accurate verification than 2D/2D AP/LAT matching method. Also the matching time less than the 2D/2D AP/LAT matching method. Taken as the amount of radiation exposure to patients less than was possible. Suggest would improve the treatment quality of care patients more useful to establish a protocol such as case.

  • PDF

Daily Setup Uncertainties and Organ Motion Based on the Tomoimages in Prostatic Radiotherapy (전립선암 치료 시 Tomoimage에 기초한 Setup 오차에 관한 고찰)

  • Cho, Jeong-Hee;Lee, Sang-Kyu;Kim, Sei-Joon;Na, Soo-Kyung
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.2
    • /
    • pp.99-106
    • /
    • 2007
  • Purpose: The patient's position and anatomy during the treatment course little bit varies to some extend due to setup uncertainties and organ motions. These factors could affected to not only the dose coverage of the gross tumor but over dosage of normal tissue. Setup uncertainties and organ motions can be minimized by precise patient positioning and rigid immobilization device but some anatomical site such as prostate, the internal organ motion due to physiological processes are challenge. In planning procedure, the clinical target volume is a little bit enlarged to create a planning target volume that accounts for setup uncertainties and organ motion as well. These uncertainties lead to differences between the calculated dose by treatment planning system and the actually delivered dose. The purpose of this study was to evaluate the differences of interfractional displacement of organ and GTV based on the tomoimages. Materials and Methods: Over the course of 3 months, 3 patients, those who has applied rectal balloon, treated for prostatic cancer patient's tomoimage were studied. During the treatment sessions 26 tomoimages per patient, Total 76 tomoimages were collected. Tomoimage had been taken everyday after initial setup with lead marker attached on the patient's skin center to comparing with C-T simulation images. Tomoimage was taken after rectal balloon inflated with 60 cc of air for prostate gland immobilization for daily treatment just before treatment and it was used routinely in each case. The intrarectal balloon was inserted to a depth of 6 cm from the anal verge. MVCT image was taken with 5 mm slice thickness after the intrarectal balloon in place and inflated. For this study, lead balls are used to guide the registration between the MVCT and CT simulation images. There are three image fusion methods in the tomotherapy, bone technique, bone/tissue technique, and full image technique. We used all this 3 methods to analysis the setup errors. Initially, image fusions were based on the visual alignment of lead ball, CT anatomy and CT simulation contours and then the radiation therapist registered the MVCT images with the CT simulation images based on the bone based, rectal balloon based and GTV based respectively and registered image was compared with each others. The average and standard deviation of each X, Y, Z and rotation from the initial planning center was calculated for each patient. The image fusions were based on the visual alignment of lead ball, CT anatomy and CT simulation contours. Results: There was a significant difference in the mean variations of the rectal balloon among the methods. Statistical results based on the bone fusion shows that maximum x-direction shift was 8 mm and 4.2 mm to the y-direction. It was statistically significant (P=<0.0001) in balloon based fusion, maximum X and Y shift was 6 mm, 16mm respectively. One patient's result was more than 16 mm shift and that was derived from the rectal expansions due to the bowl gas and stool. GTV based fusion results ranging from 2.7 to 6.6 mm to the x-direction and 4.3$\sim$7.8 mm to the y-direction respectively. We have checked rotational error in this study but there are no significant differences among fusion methods and the result was 0.37$\pm$0.36 in bone based fusion and 0.34$\pm$0.38 in GTV based fusion.

  • PDF

Comparisons of Unicortical and Bicortical Lateral Mass Screws in the Cervical Spine : Safety vs Strength (경추부의 후관절 나사못 고정술에서 단피질삽입법과 양피질 삽입법 간의 특성에 관한 비교)

  • Park, Choon-Keun;Hwang, Jang-Hoe;Ji, Chul;Lee, Jae Un;Sung, Jae Hoon;Choi, Seung-Jin;Lee, Sang-Won;Seybold, Eric;Park, Sung-Chan;Cho, Kyung-Suok;Park, Chun-Kun;Kang, Joon-Ki
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.10
    • /
    • pp.1210-1219
    • /
    • 2001
  • Introduction : The purpose of this study was to analyze the safety, pullout strength and radiographic characteristics of unicortical and bicortical screws of cervical facet within cadaveric specimens and evaluate the influence of level of training on the positioning of these screws. Methods : Twenty-one cadavers, mean 78.9 years of age, underwent bilateral placement of 3.5mm AO lateral mass screw from C3-C6(n=168) using a slight variation of the Magerl technique. Intraoperative imaging was not used. The right side(unicortical) utilized only 14mm screws(effective length of 11mm) while on the left side to determine the length of the screw after the ventral cortex had been drilled. Three spine surgeons(attending, fellow, chief resident) with varying levels of spine training performed the procedure on seven cadavers each. All spines were harvested and lateral radiographs were taken. Individual cervical vertebrae were carefully dissected and then axial radiographs were taken. The screws were evaluated clinically and radiographically for their safety. Screws were graded clinically for their safety with respect to the spinal cord, facet joint, nerve root and vertebral artery. The grades consisted of the following categories : "satisfactory", "at risk" and "direct injury". Each screw was also graded according to its zone placement. Screw position was quantified by measuring a sagittal angle from the lateral radiograph and an axial angle from the axial radiograph. Pull-out force was determined for all screws using a material testing machine. Results : Dissection revealed that fifteen screws on the left side actually had only unicortical and not bicortical purchase as intended. The majority of screws(92.8%) were satisfactory in terms of safety. There were no injuries to the spinal cord. On the right side(unicortical), 98.9% of the screws were "satisfactory" and on the left side(bicortical) 68.1% were "satisfactory". There was a 5.8% incidence of direct arterial injury and a 17.4% incidence of direct nerve root injury with the bicortical screws. There were no "direct injuries" with the unicortical screws for the nerve root or vertebral artery. The unicortical screws had a 21.4% incidence of direct injury of the facet joint, while the bicortical screws had a 21.7% incidence. The majority of "direct injury" of bicortical screws were placed by the surgeon with the least experience. The performance of the resident surgeon was significantly different from the attending or fellow(p<0.05) in terms of safety of the nerve root and vertebral artery. The attending's performance was significantly better than the resident or fellow(p<0.05) in terms of safety of the facet joint. There was no relationship between the safety of a screw and its zone placement. The axial deviation angle measured $23.5{\pm}6.6$ degrees and $19.8{\pm}7.9$ degrees for the unicortical and bicortical screws, respectively. The resident surgeon had a significantly lower angle than the attending or fellow(p<0.05). The sagittal angle measured $66.3{\pm}7.0$ degrees and $62.3{\pm}7.9$ degrees for the unicortical and bicortical screws, respectively. The attending had a significantly lower sagittal angle than the fellow or resident(p<0.05). Thirty-three screws that entered the facet joint were tested for pull-out strength but excluded from the data because they were not lateral mass screws per-se and had deviated substantially from the intended final trajectory. The mean pull-out force for all screws was $542.9{\pm}296.6N$. There was no statistically significant difference between the pull-out force for unicortical($519.9{\pm}286.9N$) and bicortical($565.2{\pm}306N$) screws. There was no significant difference in pull-out strengths with respect to zone placement. Conclusion : It is our belief that the risk associated with bicortical purchase mandates formal spine training if it is to be done safely and accurately. Unicortical screws are safer regardless of level of training. It is apparent that 14mm lateral mass screws placed in a supero-lateral trajectory in the adult cervical spine provide an equivalent strength with a much lower risk of injury than the longer bicortical screws placed in a similar orientation.

  • PDF