• Title/Summary/Keyword: deviance residuals

Search Result 2, Processing Time 0.014 seconds

Diagnostics for the Cox model

  • Xue, Yishu;Schifano, Elizabeth D.
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.6
    • /
    • pp.583-604
    • /
    • 2017
  • The most popular regression model for the analysis of time-to-event data is the Cox proportional hazards model. While the model specifies a parametric relationship between the hazard function and the predictor variables, there is no specification regarding the form of the baseline hazard function. A critical assumption of the Cox model, however, is the proportional hazards assumption: when the predictor variables do not vary over time, the hazard ratio comparing any two observations is constant with respect to time. Therefore, to perform credible estimation and inference, one must first assess whether the proportional hazards assumption is reasonable. As with other regression techniques, it is also essential to examine whether appropriate functional forms of the predictor variables have been used, and whether there are any outlying or influential observations. This article reviews diagnostic methods for assessing goodness-of-fit for the Cox proportional hazards model. We illustrate these methods with a case-study using available R functions, and provide complete R code for a simulated example as a supplement.

The Comprehensive Proportional Hazards Model Incorporating Time-dependent Covariates for Water Pipes (상수관로에 대한 시간종속형 공변수를 포함한 포괄적 비례위험모형)

  • Park, Su-Wan
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.6
    • /
    • pp.445-455
    • /
    • 2009
  • In this paper proportional hazards models for the first through seventh break of 150 mm cast iron pipes in a case study area are established. During the modeling process the assumption of the proportional hazards for covariates on the hazards is examined to include the time-dependent covariate terms in the models. As a result, the pipe material/joint type and the number of customers are modeled as time-dependent for the first failure, and for the second failure only the number of customers is modeled as time-dependent. From the analysis on the baseline hazard functions the failure hazards are found to be generally increasing for the first and second failure, while the hazards of the third break and beyond showed a form of a bath-tub. Furthermore, the changes in the baseline hazard rates according to the time and number of break reflect that the general condition of the pipes is deteriorating. The factors causing pipe break and their effects are analyzed based on the estimated regression coefficients and their hazard ratios, and the constructed models are verified using the deviance residuals of the models.