• Title/Summary/Keyword: developing brain

Search Result 279, Processing Time 0.027 seconds

Diffuse Intrinsic Pontine Glioma : Clinical Features, Molecular Genetics, and Novel Targeted Therapeutics

  • Mathew, Ryan K.;Rutka, James T.
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.3
    • /
    • pp.343-351
    • /
    • 2018
  • Diffuse intrinsic pontine glioma (DIPG) is a deadly paediatric brain cancer. Transient response to radiation, ineffective chemotherapeutic agents and aggressive biology result in rapid progression of symptoms and a dismal prognosis. Increased availability of tumour tissue has enabled the identification of histone gene aberrations, genetic driver mutations and methylation changes, which have resulted in molecular and phenotypic subgrouping. However, many of the underlying mechanisms of DIPG oncogenesis remain unexplained. It is hoped that more representative in vitro and preclinical models-using both xenografted material and genetically engineered mice-will enable the development of novel chemotherapeutic agents and strategies for targeted drug delivery. This review provides a clinical overview of DIPG, the barriers to progress in developing effective treatment, updates on drug development and preclinical models, and an introduction to new technologies aimed at enhancing drug delivery.

A Model of University Reform in a Developing Country: The Brain Korea 21 Program

  • Seol, Sung-Soo
    • Asian Journal of Innovation and Policy
    • /
    • v.1 no.1
    • /
    • pp.31-49
    • /
    • 2012
  • This paper is a review of a 13-year-old policy for university reform in Korea, the Brain Korea 21 Program, based on current theoretical frameworks. Current theoretical frameworks are classified into three groups: micro and macro perspectives on universities and discussion on world-class universities. The overall purpose of BK21 is to bring up high-level scholarship through manpower and achieve several targets of university reform. The program can be evaluated as a success in terms of following a research university model but not the entrepreneurial university model. However, the fact that a 13-year old policy developed under a research university model had features of the entrepreneurial university shows the direction of change that the research university is currently undergoing.

A Study on the Developing Strategies of Knowledge based Industry in ChunChon Area for the Digital Age. (디지털시대 춘천지역 지식기반산업의 발전방안에 관한 연구)

  • Kim, Chi-Ho;La, Kong-Woo;Min, Tae-Hong
    • International Commerce and Information Review
    • /
    • v.8 no.3
    • /
    • pp.3-21
    • /
    • 2006
  • This study aims to explore the developing strategies of knowledge based industry in ChunChon Area. This study suggests several strategies for promoting local development in Chunchon Area as follows ; first, building of local innovation system in chunchon area and convergence and diffusion of knowledge based industries. second, making of industrial environment suitable to developing knowledge based industries. third, the establishment of overall industrial supporting systems. fourth, expansion of industrial infra and prevention of the brain drain. fifth, transformation of industrial complex into innovation clusters. The result of this study will be useful for the chief executives officers to make more rational decision making for industrial developing strategies is related to the Knowledge based Industries. The paper also strives to provoke debate in this area with to encouraging further research on the topic.

  • PDF

Apoptosis during Rat Tooth Development

  • Kim, Min-Ju;Kim, Yu-Seong;Moon, Yeon-Hee;Jung, Na-Ri;Moon, Jung-Sun;Kim, Sun-Hun;Kim, Min-Seok
    • International Journal of Oral Biology
    • /
    • v.36 no.1
    • /
    • pp.31-35
    • /
    • 2011
  • Teeth develop via a reciprocal induction between the ectomesenchyme originating from the neural crest and the ectodermal epithelium. During complete formation of the tooth morphology and structure, many cells proliferate, differentiate, and can be replaced with other structures. Apoptosis is a type of genetically-controlled cell death and a biological process arising at the cellular level during development. To determine if apoptosis is an effective mechanism for eliminating cells during tooth development, this process was examined in the rat mandible including the developing molar teeth using the transferase-mediated dUTP-biotin nick labeling (TUNEL) method. The tooth germ of the mandibular first molar in the postnatal rat showed a variety of morphological appearances from the bell stage to the crown stage. Strong TUNEL-positive reactivity was observed in the ameloblasts and cells of the stellate reticulum. Odontoblasts near the prospective cusp area also showed a TUNEL positive reaction and several cells in the dental papilla, which are the forming pulp, were also stained intensively in this assay. Our results thus show that apoptosis may take place not only in epithelial-derived dental organs but also in the mesenchyme-derived dental papilla. Hence, apoptosis may be an essential biological process in tooth development.

A New Disability-related Health Care Needs Assessment Tool for Persons With Brain Disorders

  • Kim, Yoon;Eun, Sang June;Kim, Wan Ho;Lee, Bum-Suk;Leigh, Ja-Ho;Kim, Jung-Eun;Lee, Jin Yong
    • Journal of Preventive Medicine and Public Health
    • /
    • v.46 no.5
    • /
    • pp.282-290
    • /
    • 2013
  • Objectives: This study aimed to develop a health needs assessment (HNA) tool for persons with brain disorders and to assess the unmet needs of persons with brain disorders using the developed tool. Methods: The authors used consensus methods to develop a HNA tool. Using a randomized stratified systematic sampling method adjusted for sex, age, and districts, 57 registered persons (27 severe and 30 mild cases) with brain disorders dwelling in Seoul, South Korea were chosen and medical specialists investigated all of the subjects with the developed tools. Results: The HNA tool for brain disorders we developed included four categories: 1) medical interventions and operations, 2) assistive devices, 3) rehabilitation therapy, and 4) regular follow-up. This study also found that 71.9% of the subjects did not receive appropriate medical care, which implies that the severity of their disability is likely to be exacerbated and permanent, and the loss irrecoverable. Conclusions: Our results showed that the HNA tool for persons with brain disorders based on unmet needs defined by physicians can be a useful method for evaluating the appropriateness and necessity of medical services offered to the disabled, and it can serve as the norm for providing health care services for disabled persons. Further studies should be undertaken to increase validity and reliability of the tool. Fundamental research investigating the factors generating or affecting the unmet needs is necessary; its results could serve as basis for developing policies to eliminate or alleviate these factors.

Neuropathological Mechanisms of Perinatal Brain Injury (주산기 뇌손상의 신경병리적 기전)

  • Song Ju-Young;Kim Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.4
    • /
    • pp.199-207
    • /
    • 2003
  • This review describes the neurophathological mechanisms that are implicated in perinatal brain injury. Perinatal brain injury is the most important cause of morbidity and mortality to infants, often leading to spastic motor deficits, mental retardation, seizures, and learning impairments. The immature brain injury is usually caused by cerebral hypoxia-ischemia, hemorrhage, or infection. The important form of perinatal brain injury is the hypoxic-ischemic injury and the cerebral hemorrhage. The pathology of hypoxic-ischemic injury include delayed energy failure by mitochondrial dysfunction, neuronal excitotoxicity and vulnerability of white matter in developing brain. The immature brain has the fragile vascular bed of germinal matrix and can not effectively centralize their circulation. Therefore, the cerebral hemorrhage process is considered to be involved in the periventricular leukomalacia.

  • PDF

The Relationship Between Brain Activation for Taking Others' Perspective and Interoceptive Abilities in Autism Spectrum Disorder: An fMRI Study

  • Huiyeong Jeon;Ahjeong Hur;Hoyeon Lee;Yong-Wook Shin;Sang-Ick Lee;Chul-Jin Shin;Siekyeong Kim;Gawon Ju;Jeonghwan Lee;Joon Hyung Jung;Seungwon Chung;Jung-Woo Son
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.35 no.3
    • /
    • pp.197-209
    • /
    • 2024
  • Objectives: In this functional magnetic resonance imaging study, we aimed to investigate the differences in brain activation between individuals with autism spectrum disorder (ASD) and typically developing (TD) individuals during perspective taking. We also examined the association between brain activation and empathic and interoceptive abilities. Methods: During scanning, participants from the ASD (n=17) and TD (n=22) groups were shown pain stimuli and asked to rate the level of the observed pain from both self- and other-perspectives. Empathic abilities, including perspective taking, were measured using an empathic questionnaire, and three dimensions of interoception were assessed: interoceptive accuracy, interoceptive sensibility, and interoceptive trait prediction errors. Results: During self-perspective taking, the ASD group exhibited greater activation in the left precuneus than the TD group. During other-perspective taking, relative hyperactivation extended to areas including the right precuneus, right superior frontal gyrus, left caudate nucleus, and left amygdala. Brain activation levels in the right superior frontal gyrus while taking other-perspective were negatively correlated with interoceptive accuracy, and those in the left caudate were negatively correlated with perspective taking ability in the ASD group. Conclusion: Individuals with ASD show atypical brain activation during perspective taking. Notably, their brain regions associated with stress reactions and escape responses are overactivated when taking other-perspective. This overactivity is related to poor interoceptive accuracy, suggesting that individuals with ASD may experience difficulties with the self-other distinction or atypical embodiment when considering another person's perspective.

A Fuzzy logic-based Model in Image Processing

  • Moghani, Ali
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.943-946
    • /
    • 2008
  • Many works have been done to enable computer, as brain of robot, to learn color categorization, most of them rely on modeling of human color perception and mathematical complexities. This paper aims at developing the innate ability of the computer to learn the human-like color categorization.

  • PDF

Postnatal Development of Subcallosal Zone Following Suppression of Programmed Cell Death in Bax-deficient Mice

  • Kim, Woon Ryoung;Sun, Woong
    • Development and Reproduction
    • /
    • v.17 no.3
    • /
    • pp.179-186
    • /
    • 2013
  • Neural stem cells are found in adult mammalian brain regions including the subgranular zone (SGZ) of the dentate gyrus (DG) and the subventricular zone (SVZ). In addition to these two regions, other neurogenic regions are often reported in many species. Recently, the subcallosal zone (SCZ) has been identified as a novel neurogenic region where new neuroblasts are spontaneously generated and then, by Bax-dependent apoptosis, eliminated. However, the development of SCZ in the postnatal brain is not yet fully explored. The present study investigated the precise location and amount of neuroblasts in the developing brain. To estimate the importance of programmed cell death (PCD) for SCZ histogenesis, SCZ development in the Bax-knockout (KO) mouse was examined. Interestingly, an accumulation of extra neurons with synaptic fibers in the SCZ of Bax-KO mice was observed. Indeed, Bax-KO mice exhibited enhanced startle response to loud acoustic stimuli and reduced anxiety level. Considering the prevention of PCD in the SCZ leads to sensory-motor gating dysfunction in the Bax-KO mice, active elimination of SCZ neuroblasts may promote optimal brain function.