Browse > Article
http://dx.doi.org/10.3340/jkns.2018.0008

Diffuse Intrinsic Pontine Glioma : Clinical Features, Molecular Genetics, and Novel Targeted Therapeutics  

Mathew, Ryan K. (Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children)
Rutka, James T. (Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children)
Publication Information
Journal of Korean Neurosurgical Society / v.61, no.3, 2018 , pp. 343-351 More about this Journal
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a deadly paediatric brain cancer. Transient response to radiation, ineffective chemotherapeutic agents and aggressive biology result in rapid progression of symptoms and a dismal prognosis. Increased availability of tumour tissue has enabled the identification of histone gene aberrations, genetic driver mutations and methylation changes, which have resulted in molecular and phenotypic subgrouping. However, many of the underlying mechanisms of DIPG oncogenesis remain unexplained. It is hoped that more representative in vitro and preclinical models-using both xenografted material and genetically engineered mice-will enable the development of novel chemotherapeutic agents and strategies for targeted drug delivery. This review provides a clinical overview of DIPG, the barriers to progress in developing effective treatment, updates on drug development and preclinical models, and an introduction to new technologies aimed at enhancing drug delivery.
Keywords
Glioma; Paediatric; DIPG; Brainstem tumor; Focused ultrasound;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Puget S, Philippe C, Bax DA, Job B, Varlet P, Junier MP, et al. : Mesenchymal transition and PDGFRA amplification/mutation are key distinct oncogenic events in pediatric diffuse intrinsic pontine gliomas. PLoS One 7 : e30313, 2012   DOI
2 Robison NJ, Kieran MW : Diffuse intrinsic pontine glioma: a reassessment. J Neurooncol 119 : 7-15, 2014   DOI
3 Diaz RJ, McVeigh PZ, O'Reilly MA, Burrell K, Bebenek M, Smith C, et al. : Focused ultrasound delivery of Raman nanoparticles across the bloodbrain barrier: potential for targeting experimental brain tumors. Nanomedicine 10 : 1075-1087, 2014   DOI
4 Doolittle ND, Anderson CP, Bleyer WA, Cairncross JG, Cloughesy T, Eck SL, et al. : Importance of dose intensity in neuro-oncology clinical trials: summary report of the sixth annual meeting of the Blood-Brain Barrier Disruption Consortium. Neuro Oncol 3 : 46-54, 2001   DOI
5 Elias WJ, Huss D, Voss T, Loomba J, Khaled M, Zadicario E, et al. : A pilot study of focused ultrasound thalamotomy for essential tremor. N Engl J Med 369 : 640-648, 2013   DOI
6 Etame AB, Diaz RJ, O'Reilly MA, Smith CA, Mainprize TG, Hynynen K, et al. : Enhanced delivery of gold nanoparticles with therapeutic potential into the brain using MRI-guided focused ultrasound. Nanomedicine 8 : 1133-1142, 2012   DOI
7 Etame AB, Diaz RJ, Smith CA, Mainprize TG, Hynynen K, Rutka JT : Focused ultrasound disruption of the blood-brain barrier: a new frontier for therapeutic delivery in molecular neurooncology. Neurosurg Focus 32 : E3, 2012
8 Funato K, Major T, Lewis PW, Allis CD, Tabar V : Use of human embryonic stem cells to model pediatric gliomas with H3.3K27M histone mutation. Science 346 : 1529-1533, 2014   DOI
9 Fisher PG, Breiter SN, Carson BS, Wharam MD, Williams JA, Weingart JD, et al. : A clinicopathologic reappraisal of brain stem tumor classification. Identification of pilocystic astrocytoma and fibrillary astrocytoma as distinct entities. Cancer 89 : 1569-1576, 2000   DOI
10 Freeman CR, Perilongo G : Chemotherapy for brain stem gliomas. Childs Nerv Syst 15 : 545-553, 1999   DOI
11 Grasso CS, Tang Y, Truffaux N, Berlow NE, Liu L, Debily MA, et al. : Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nat Med 21 : 555-559, 2015   DOI
12 Shang X, Wang P, Liu Y, Zhang Z, Xue Y : Mechanism of low-frequency ultrasound in opening blood-tumor barrier by tight junction. J Mol Neurosci 43 : 364-369, 2011   DOI
13 Roujeau T, Machado G, Garnett MR, Miquel C, Puget S, Geoerger B, et al. : Stereotactic biopsy of diffuse pontine lesions in children. J Neurosurg 107(1 Suppl) : 1-4, 2007   DOI
14 Saratsis AM, Yadavilli S, Magge S, Rood BR, Perez J, Hill DA, et al. : Insights into pediatric diffuse intrinsic pontine glioma through proteomic analysis of cerebrospinal fluid. Neuro Oncol 14 : 547-560, 2012   DOI
15 Schroeder KM, Hoeman CM, Becher OJ : Children are not just little adults: recent advances in understanding of diffuse intrinsic pontine glioma biology. Pediatr Res 75 : 205-209, 2014   DOI
16 Sheikov N, McDannold N, Jolesz F, Zhang YZ, Tam K, Hynynen K : Brain arterioles show more active vesicular transport of blood-borne tracer molecules than capillaries and venules after focused ultrasound-evoked opening of the blood-brain barrier. Ultrasound Med Biol 32 : 1399-1409, 2006   DOI
17 Sheikov N, McDannold N, Sharma S, Hynynen K : Effect of focused ultrasound applied with an ultrasound contrast agent on the tight junctional integrity of the brain microvascular endothelium. Ultrasound Med Biol 34 : 1093-1104, 2008   DOI
18 Halvorson KG, Barton KL, Schroeder K, Misuraca KL, Hoeman C, Chung A, et al. : A high-throughput in vitro drug screen in a genetically engineered mouse model of diffuse intrinsic pontine glioma identifies BMS-754807 as a promising therapeutic agent. PLoS One 10 : e0118926, 2015   DOI
19 Souweidane MM, Kramer K, Pandit-Taskar N, Zanzonico P, Zhou Z, Donzelli M, et al. : A phase I study of convection enhanced delivery (CED) of 124I-8H9 radio-labeled monoclonal antibody in children with diffuse intrinsic pontine glioma (DIPG). J Clin Oncol 35(15 suppl) : 2010-2010, 2017
20 Taylor KR, Mackay A, Truffaux N, Butterfield YS, Morozova O, Philippe C, et al. : Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma. Nat Genet 46 : 457-461, 2014   DOI
21 Hankinson TC, Campagna EJ, Foreman NK, Handler MH : Interpretation of magnetic resonance images in diffuse intrinsic pontine glioma: a survey of pediatric neurosurgeons. J Neurosurg Pediatr 8 : 97-102, 2011   DOI
22 Hashizume R, Andor N, Ihara Y, Lerner R, Gan H, Chen X, et al. : Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nat Med 20 : 1394-1396, 2014   DOI
23 Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA : Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology 220 : 640-646, 2001   DOI
24 Jones C, Karajannis MA, Jones DTW, Kieran MW, Monje M, Baker SJ, et al. : Pediatric high-grade glioma: biologically and clinically in need of new thinking. Neuro Oncol 19 : 153-161, 2017
25 Jansen MH, van Vuurden DG, Vandertop WP, Kaspers GJ : Diffuse intrinsic pontine gliomas: a systematic update on clinical trials and biology. Cancer Treat Rev 38 : 27-35, 2012   DOI
26 Janssens GO, Jansen MH, Lauwers SJ, Nowak PJ, Oldenburger FR, Bouffet E, et al. : Hypofractionation vs conventional radiation therapy for newly diagnosed diffuse intrinsic pontine glioma: a matched-cohort analysis. Int J Radiat Oncol 85 : 315-320, 2013   DOI
27 Jolesz FA, Hynynen KH : MRI-Guided Focused Ultrasound Surgery, ed 1. Boca Raton : CRC Press, 2007
28 Kambhampati M, Perez JP, Yadavilli S, Saratsis AM, Hill AD, Ho CY, et al. : A standardized autopsy procurement allows for the comprehensive study of DIPG biology. Oncotarget 6 : 12740-12747, 2015
29 von Werder A, Seidler B, Schmid RM, Schneider G, Saur D : Production of avian retroviruses and tissue-specific somatic retroviral gene transfer in vivo using the RCAS/TVA system. Nat Protoc 7 : 1167-1183, 2012   DOI
30 Veringa SJ, Biesmans D, van Vuurden DG, Jansen MH, Wedekind LE, Horsman I, et al. : In vitro drug response and efflux transporters associated with drug resistance in pediatric high grade glioma and diffuse intrinsic pontine glioma. PLoS One 8 : e61512, 2013   DOI
31 Vykhodtseva NI, Hynynen K, Damianou C : Histologic effects of high intensity pulsed ultrasound exposure with subharmonic emission in rabbit brain in vivo. Ultrasound Med Biol 21 : 969-979, 1995   DOI
32 Walker DA, Liu J, Kieran M, Jabado N, Picton S, Packer R, et al. : A multidisciplinary consensus statement concerning surgical approaches to lowgrade, high-grade astrocytomas and diffuse intrinsic pontine gliomas in childhood (CPN Paris 2011) using the Delphi method. Neuro Oncol 15 : 462-468, 2013   DOI
33 Zaghloul MS, Eldebawy E, Ahmed S, Mousa AG, Amin A, Refaat A, et al. : Hypofractionated conformal radiotherapy for pediatric diffuse intrinsic pontine glioma (DIPG): a randomized controlled trial. Radiother Oncol 111 : 35-40, 2014   DOI
34 Warren KE : Diffuse intrinsic pontine glioma: poised for progress. Front Oncol 2 : 205, 2012
35 Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J, et al. : Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44 : 251-253, 2012   DOI
36 Wu YL, Maachani UB, Schweitzer M, Singh R, Wang M, Chang R, et al. : Dual inhibition of PI3K/AKT and MEK/ERK pathways induces synergistic antitumor effects in diffuse intrinsic pontine glioma cells. Transl Oncol 10 : 221-228, 2017   DOI
37 Zhou Z, Singh R, Souweidane MM : Convection-enhanced delivery for diffuse intrinsic pontine glioma treatment. Curr Neuropharmacol 15 : 116-128, 2017
38 Bartels U, Hawkins C, Vezina G, Kun L, Souweidane M, Bouffet E : Proceedings of the diffuse intrinsic pontine glioma (DIPG) Toronto Think Tank: advancing basic and translational research and cooperation in DIPG. J Neurooncol 105 : 119-125, 2011   DOI
39 Aquino-Parsons C, Hukin J, Green A : Concurrent carbogen and radiation therapy in children with high-risk brainstem gliomas. Pediatr Blood Cancer 50 : 397-399, 2008   DOI
40 Bailey S, Howman A, Wheatley K, Wherton D, Boota N, Pizer B, et al. : Diffuse intrinsic pontine glioma treated with prolonged temozolomide and radiotherapy--results of a United Kingdom phase II trial (CNS 2007 04). Eur J Cancer 49 : 3856-3862, 2013   DOI
41 Becher OJ, Hambardzumyan D, Walker TR, Helmy K, Nazarian J, Albrecht S, et al. : Preclinical evaluation of radiation and perifosine in a genetically and histologically accurate model of brainstem glioma. Cancer Res 70 : 2548-2557, 2010   DOI
42 Bender S, Tang Y, Lindroth AM, Hovestadt V, Jones DT, Kool M, et al. : Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. Cancer Cell 24 : 660-672, 2013   DOI
43 Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH : Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci U S A 91 : 2076-2080, 1994   DOI
44 Miller DL : Particle gathering and microstreaming near ultrasonically activated gas-filled micropores. J Acoust Soc Am 84 : 1378-1387, 1988   DOI
45 Khuong-Quang DA, Buczkowicz P, Rakopoulos P, Liu XY, Fontebasso AM, Bouffet E, et al. : K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 124 : 439-447, 2012   DOI
46 Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. : The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131 : 803-820, 2016   DOI
47 Marigil M, Martinez-Velez N, Dominguez PD, Idoate MA, Xipell E, Patino-Garcia A, et al. : Development of a DIPG orthotopic model in mice using an implantable guide-screw system. PLoS One 12 : e0170501, 2017   DOI
48 Marquet F, Tung YS, Teichert T, Ferrera VP, Konofagou EE : Noninvasive, transient and selective blood-brain barrier opening in non-human primates in vivo. PLoS One 6 : e22598, 2011   DOI
49 Martin E, Jeanmonod D, Morel A, Zadicario E, Werner B : High-intensity focused ultrasound for noninvasive functional neurosurgery. Ann Neurol 66 : 858-861, 2009   DOI
50 Misuraca KL, Barton KL, Chung A, Diaz AK, Conway SJ, Corcoran DL, et al. : Pax3 expression enhances PDGF-B-induced brainstem gliomagenesis and characterizes a subset of brainstem glioma. Acta Neuropathol Commun 2 : 134, 2014   DOI
51 Misuraca KL, Cordero FJ, Becher OJ : Pre-clinical models of diffuse intrinsic pontine glioma. Front Oncol 5 : 172, 2015
52 Misuraca KL, Hu G, Barton KL, Chung A, Becher OJ : A novel mouse model of diffuse intrinsic pontine glioma initiated in Pax3-expressing cells. Neoplasia 18 : 60-70, 2016   DOI
53 Kebudi R, Cakir FB : Management of diffuse pontine gliomas in children: recent developments. Paediatr Drugs 15 : 351-362, 2013   DOI
54 Caretti V, Sewing AC, Lagerweij T, Schellen P, Bugiani M, Jansen MH, et al. : Human pontine glioma cells can induce murine tumors. Acta Neuropathol 127 : 897-909, 2014   DOI
55 Bradley KA, Zhou T, McNall-Knapp RY, Jakacki RI, Levy AS, Vezina G, et al. : Motexafin-gadolinium and involved field radiation therapy for intrinsic pontine glioma of childhood: a children's oncology group phase 2 study. Int J Radiat Oncol Biol Phys 85 : e55-e60, 2013   DOI
56 Buczkowicz P, Hoeman C, Rakopoulos P, Pajovic S, Letourneau L, Dzamba M, et al. : Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat Genet 46 : 451-456, 2014   DOI
57 Cage TA, Samagh SP, Mueller S, Nicolaides T, Haas-Kogan D, Prados M, et al. : Feasibility, safety, and indications for surgical biopsy of intrinsic brainstem tumors in children. Childs Nerv Syst 29 : 1313-1319, 2013   DOI
58 Castel D, Philippe C, Calmon R, Le Dret L, Truffaux N, Boddaert N, et al. : Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol 130 : 815-827, 2015   DOI
59 Chan KM, Fang D, Gan H, Hashizume R, Yu C, Schroeder M, et al. : The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes Dev 27 : 985-990, 2013   DOI
60 Chassot A, Canale S, Varlet P, Puget S, Roujeau T, Negretti L, et al. : Radiotherapy with concurrent and adjuvant temozolomide in children with newly diagnosed diffuse intrinsic pontine glioma. J Neurooncol 106 : 399-407, 2012   DOI
61 Paugh BS, Broniscer A, Qu C, Miller CP, Zhang J, Tatevossian RG, et al. : Genome-wide analyses identify recurrent amplifications of receptor tyrosine kinases and cell-cycle regulatory genes in diffuse intrinsic pontine glioma. J Clin Oncol 29 : 3999-4006, 2011   DOI
62 Cordero FJ, Huang Z, Grenier C, He X, Hu G, McLendon RE, et al. : Histone H3.3K27M represses p16 to accelerate gliomagenesis in a murine model of DIPG. Mol Cancer Res 15 : 1243-1254, 2017   DOI
63 Monje M, Mitra SS, Freret ME, Raveh TB, Kim J, Masek M, et al. : Hedgehog-responsive candidate cell of origin for diffuse intrinsic pontine glioma. Proc Natl Acad Sci U S A 108 : 4453-4458, 2011   DOI
64 Narayana A, Kunnakkat S, Chacko-Mathew J, Gardner S, Karajannis M, Raza S, et al. : Bevacizumab in recurrent high-grade pediatric gliomas. Neuro Oncol 12 : 985-990, 2010   DOI
65 Panditharatna E, Yaeger K, Kilburn LB, Packer RJ, Nazarian J : Clinicopathology of diffuse intrinsic pontine glioma and its redefined genomic and epigenomic landscape. Cancer Genet 208 : 367-373, 2015   DOI
66 Pathania M, De Jay N, Maestro N, Harutyunyan AS, Nitarska J, Pahlavan P, et al. : H3.3K27M cooperates with Trp53 loss and PDGFRA gain in mouse embryonic neural progenitor cells to induce invasive high-grade gliomas. Cancer Cell 32 : 684-700.e9, 2017   DOI
67 Piunti A, Hashizume R, Morgan MA, Bartom ET, Horbinski CM, Marshall SA, et al. : Therapeutic targeting of polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas. Nat Med 23 : 493-500, 2017   DOI
68 Plessier A, Le Dret L, Varlet P, Beccaria K, Lacombe J, Meriaux S, et al. : New in vivo avatars of diffuse intrinsic pontine gliomas (DIPG) from stereotactic biopsies performed at diagnosis. Oncotarget 8 : 52543-52559, 2017