• Title/Summary/Keyword: detonation

Search Result 326, Processing Time 0.023 seconds

Sympathetic Detonation Modeling of PBXN-109 (PBXN-109가 장전된 155 mm 고폭탄의 순폭현상 해석)

  • Kim, Bohoon;Kim, Minsung;Yang, Seungho;Oh, Sean;Kim, Jinseok;Choi, Sangkyung;Yoh, Jai-Ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.5
    • /
    • pp.1-11
    • /
    • 2014
  • Sympathetic detonation (SD) of high explosives occurs when a detonating donor initiates neighboring acceptors. The present study focuses on the hydrodynamic simulation of one-on-one sympathetic detonation of 155 mm charge filled with PBXN-109. Both unbuffered and buffered SD configurations are performed while changing the distance between each charge, in order to investigate the detonation sensitivity to a donor initiation. The cause of a SD is by a shock impact for the unbuffered case at a close range, while at a distant range, blast fragment penetration is the primary cause. The buffers can reduce the incident sensitivity to a SD by reducing the strengths of shock wave and impinging fragments.

Comparative Analyses of Commercial Detonation Nanodiamonds

  • Puzyr, A.P.;Burova, A.E.;Bondar, V.S.;Rhee, C.K.;Rhee, W.H.;Hwang, K.C.
    • Journal of Powder Materials
    • /
    • v.18 no.3
    • /
    • pp.297-302
    • /
    • 2011
  • Colloidal stability is one of crucial factors for many applications of nanodiamond. Despite recent development, nanodiamonds available on the market often exhibit a high impurity content, wide size distribution of aggregates and low resistance to sedimentation. In the current study, four commercial nanodiamond powders synthesized by detonation synthesis were surface modified and then separated with respect to the size into six fractions by centrifugation. The fractions were evaluated by zeta potential, particle size distribution and elemental composition. The results showed that the modified nanodiamonds form stable colloidal suspensions without sedimentation for a long time.

Analytical Estimation of the Propulsive Performance of Pulse Detonation Engines

  • Endo, Takuma;Yatsufusa, Tomaaki;Taki, Shiro;Kasahara, Jiro;Matsuo, Akiko;Inaba, Kazuaki;Sato, Shigeru
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.506-512
    • /
    • 2004
  • We analytically estimated the propulsive performance of pulse detonation engines (PDEs) in three cases, which were (1) a fully-fueled simplified PDE, (2) a partially-fueled simplified PDE, and (3) a PDE optimized as a system. The results of the model analyses in the cases of (1) and (2) were in good agreement with published experimental data which were obtained by using simplified PDEs. The comparison between the results of the analyses of simplified PDEs and those of optimized PDE systems showed that specific impulse would become higher by about 10-20% due to PDE-system optimization.

  • PDF

Flame Propagation in the Air/Fuel Spray Mixture with Temperature Nonuniformity (비균일 온도분포를 가지는 공기/연료분무 혼합기에서의 화염전파)

  • Kim, Y.M.;Kim, S.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.111-121
    • /
    • 1995
  • The initiation and propagation of detonation waves in the air/fuel spray mixture has been numerically analyzed. An improved pressure-based method has been applied to predict the transient heterogeneous reacting flows at all speeds. Numerical results indicate that variations in the temperature gradient, the droplet size, and the fuel vapor concentration have the significant effects on the development of detonation wave in the multi-phase reactive media. The interaction mechanism between the flame-generated pressure wave and the combustion wave is discussed in detail.

  • PDF

Three-dimensional Detonation Cell Structures in a Circular Tube

  • Cho, D.R.;Won, S.H.;Shin, Edward J.R.;Choi, J.Y.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.597-601
    • /
    • 2008
  • Three-dimensional structures of detonation wave propagating in circular tube were investigated. Inviscid fluid dynamics equations coupled with a conservation equation of reaction progress variable were analyzed by a MUSCL-type TVD scheme and four stage Runge-Kutta time integration. Variable-$\gamma$ formulation was used to account for the variable properties between unburned and burned states and the chemical reaction was modeled by using a simplified one-step irreversible kinetics model. The computational code was parallelized based on domain decomposition technique using MPI-II message passing library. The computations were carried out using a home made Windows based PC cluster having 160 AMD AthloxXP and Athlon64 processor. The computational domain consisted of through a roundshaped tube with wall conditions. As an initial condition, analytical ZND solution was distributed over the computational domain with disturbances. The disturbances has circumferential large gradient. The unsteady computational results in three-dimension show the detailed mechanisms of multi-cell mode of detonation wave instabilities resulting diamond shape in smoked-foil record.

  • PDF

Analytical Study on Performance of Superdetonative Mode Ram Accelerator (초폭굉모드 램가속기의 성능에 대한 이론적 연구)

  • Sung, Kunmin;Jeung, In-Seuck
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.77-80
    • /
    • 2013
  • An analytical study on performance of superdetonative mode ram accelerator was conducted for understanding the S225 experimental result of ISL. It would be noticeable that ISL S225 experimental result could be analytically simulated with the assumptions of inlet shockwave, equilibrium combustion chemistry, temperature dependent specific heat, and C-J oblique detonation in superdetonative operation mode. As result, the S225 experiment could be affected by heat of aluminum. Also, this study showed that the improper assumption, like isentropic assumption on shockwave, or constant specific heat on combustion, might cause misunderstanding about experimental result.

  • PDF

Numerical investigation of the impact of geological discontinuities on the propagation of ground vibrations

  • Haghnejad, Ali;Ahangari, Kaveh;Moarefvand, Parviz;Goshtasbi, Kamran
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.545-552
    • /
    • 2018
  • Blast-induced ground vibrations by a significant amount of explosives may cause many problems for mining slope stability. Geological discontinuities have a significant influence on the transmission of dynamic pressure of detonation and according to their position relative to the slope face may have damaging or useful impacts on the slope stability. In this study, the effect of geological discontinuities was investigated by modelling a slope with geological discontinuities through applying the dynamic pressure in three-dimensional discrete element code (3DEC). The geological discontinuities in four states that generally apperceived in mine slopes are considered. Given the advantages of the pressure decay function defined by some researcher, this type of function was used to develop the pressure-time profile. The peak particle velocities (PPV) values were monitored along an axis by utilization of Fish programming language and the results were used as an indicator to measure the effects. As shown in the discontinuity-free model, PPV empirical models are reliable in rocks lacking discontinuities or tightly jointed rock masses. According to the other results, the empirical models cannot be used for the case where the rock mass contains discontinuities with any direction or dip. With regard to PPVs, when the direction of discontinuities is opposite to that of the slope face, the dynamic pressure of detonation is significantly damped toward the slope direction at the surface of discontinuities. On the other hand, when the discontinuities are horizontal, the dynamic pressure of detonation affects the rock mass to a large distance.

Evaluating Local Damages and Blast Resistance of RC Slabs Subjected to Contact Detonation (접촉 폭발 하중을 받는 RC 슬래브의 국부 손상 및 내폭 성능 평가)

  • Li, Ling;Lee, Jin Young;Min, Kyung Hwan;Yoon, Young Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.37-45
    • /
    • 2013
  • In this study, the resistance of various reinforced concrete (RC) slabs subjected to contact detonation was assessed. In order to enhance the blast resistance, fibers and external FRP sheets were reinforced to RC slabs. In the experiment, the $2,000{\times}1,000{\times}100mm$ sized RC slabs were fabricated using normal concrete (NC), steel fiber reinforced concrete (SFRC), polyvinyl alcohol fiber reinforced cementitious composite (PVA FRCC), and ultra-high performance cementitious composites (UHPCC). The damage levels of RC slabs subjected to contact detonation were evaluated by measuring the diameter and depth of crater, spall and breach. The experimental results were compared to the analyzed data using LS-DYNA program and three different prediction equations. The diameter and depth of crater, spall and breach were able to be predicted using LS-DYNA program approximately. The damage process of RC slabs under blast load was also well expressed. Three prediction equations suggested by other researchers had limitations to apply in terms of empirical approaches, therefore it needs further research to set more analytical considerations.

An Experimental Study on Characteristics of Small-scale PDE under Low-frequency Operating Conditions (소형 펄스 데토네이션 엔진 저주파수 작동 특성 실험연구)

  • Han, Hyung-Seok;Kim, Jung-Min;Oh, Sejong;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.81-89
    • /
    • 2018
  • In this study, the operating characteristics of a small-scale pulse detonation engine (PDE) were investigated experimentally for application as a small thruster and an igniter. The PDE was constructed using commercial gas tubes with an inner diameter of 4.22 mm. The operating and detonation propagation characteristics of the PDE were investigated over the ranges of equivalence ratios and operating frequencies. Measured detonation speed was close to 10% of the theoretical CJ values at 1 Hz and 5 Hz conditions. However, unstable propagation characteristics were shown at 20 Hz and lean conditions, where the velocity deficit was increased by 20~62%.