• Title/Summary/Keyword: detonation

Search Result 326, Processing Time 0.02 seconds

NUMERICAL STUDY OF THREE-DIMENSIONAL DETONATION WAVES USING PARALLEL PROCESSING (병렬 처리를 이용한 3차원 테토네이션 파 수치해석)

  • Cho, D.R.;Choi, J.Y.
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.15-19
    • /
    • 2005
  • Three-dimensional structures of unsteady detonation wave propagating through a square-shaped tube is studied using computational method and parallel processing. Inviscid fluid dynamics equations coupled with variable-${\gamma}$ formulation and simplified one-step Arrhenius chemical reaction model were analysed by a MUSCL-type TVD scheme and four stage Runge-Kutta time integration. Results in three dimension show the two unsteady detonation wave propagating mode, the Rectangular and diagonal mode of detonation wave instabilities. Two different modes of instability showed the same cell length but different cell width and the geometric similarities in smoked-foil record.

  • PDF

Numerical Analysis of Detonation Wave Propagation in SCRam-Accelerator (초음속 연소 탄체 가속기 내의 폭굉파 진행에 관한 수치해석)

  • Choi, Jeong-Yeol;Jeung, In-Seuck;Lee, Soo-Gab
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.1
    • /
    • pp.83-91
    • /
    • 1996
  • A numerical study is carried out to examine the ignition and propagation process of detonation wave in SCRam-accelerator operating in superdetonative mode. The time accurate solution of Reynolds averaged Navier-Stokes equations for chemically reacting flow is obtained by using the fully implicit numerical method and the higher order upwind scheme. As a result, it is clarified that the ignition process has its origin to the hot temperature region caused by shock-boundary layer interaction at the shoulder of projectile. After the ignition, the oblique detonation wave is generated and propagates toward the inlet while constructing complex shock-shock interaction and shock-boundary layer interaction. Finally, a standing oblique detonation wave is formed at the conical ramp.

  • PDF

Numerical investigation of gaseous detonation observed in the elasto-plastic metal tubes (탄소성 금속관 내 가스 폭굉의 수치적 연구)

  • Gwak, Min-cheol;Do, Yeong-dea;Park, Jeong-su;Yoh, Jai-ick
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.85-87
    • /
    • 2012
  • We present a numerical investigation on gaseous (ethylene-air mixture) detonation in the elastoplastical metal tubes to understand the wall effects associated with the developing detonation instability. The acoustic disturbances originating from the rapidly expanding tube walls reach the detonating flame surface, thereby causing flame distortions and total energy losses. The compressible Navier-Stokes equations with equation of state for gas and elasto-plastic deformation field equations for inert tubes are solved simultaneously to understand the complex multi-material interaction in the rapidly expanding gas pipe. In order to track governing variables across the material interface, we use the hybrid particle level-set and ghost fluid methods to precisely estimate the interfacial quantities. Features observed from the deforming (thin) tube show substantially different behavior when a detonation propagates in the rigid (thick) tube with no acoustically responding wall conditions.

  • PDF

A Study on the Change of Detonation Velocity with Explosive Variables (폭약변수에 따른 폭발속도 변화에 관한 연구)

  • 김희진;강봉용
    • Journal of Welding and Joining
    • /
    • v.14 no.2
    • /
    • pp.65-70
    • /
    • 1996
  • Detonation velocity of domestic expolsives was measured using the Dautriche method. The variables employed in this study were the thickness of explosive and the amount of salt added in the ammonium nitrate(AN) explosive. As the results of this study, it was shown that the detonation velocity increases with an increase of explosive thickness but decreases with an increase of salt content. It was further demonstrated that the detonation velocity decreases rather rapidly when the salt content increases over 20 percent. In addition, the accuracy of Dautriche method was evaluated as a preliminary study and its result showed that this method is quite reliable with an experimental error of less than 10 pct.

  • PDF

INSTABILITY OF OBLIQUE SHOCK WAVES WITH HEAT ADDITION (후방 발열이 있는 경사 충격파의 불안정성)

  • Choi, J.Y.;Shin, J.R.;Cho, D.R.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.232-235
    • /
    • 2007
  • A comprehensive numerical study was carried out to identify the on-set condition of the cell structures of oblique detonation waves (ODWs). Mach 7 incoming flow was considered with all other flow variables were fixed except the flow turning angles varying from 35 to 38. For a given flow conditions theoretical maximum turning angle is $38.2^{\circ}$ where the oblique detonation wave may be stabilized. The effects of grid resolution were tested using grids from $255{\times}100$ to $4,005{\times}1,600$. The numerical smoked foil records exhibits the detonation cell structures with dual triple points running opposite directions for the 36 to 38 turning angles. As the turning angle get closer to the maximum angle the cell structures gets finer and the oscillatory behavior of the primary triple point was observed. The thermal occlusion behind the oblique detonation wave was observed for the $38^{\circ}$ turning angle.

  • PDF

A Numerical Study on Normal and Abnormal Combustion in Hydrogen Premixture (수소 예혼합기의 정상 및 이상연소에 관한 수치해석)

  • 손채훈;정석호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1989-1998
    • /
    • 1995
  • Characteristics of the flame propagation for normal and abnormal combustion in hydrogen premixture in a cylindrical constant-volume combustion chamber are studied numerically. A detailed hydrogen oxidation kinetic mechanism, mixture transport properties and a model describing spark ignition process are used. The calculated pressure-time history of the stable deflagration wave propagation agrees well with the experiment. The ignition of the premixture in the unburned gas, initiated by the hot spot, causes a transition from deflagration to detonation under some initial temperature and pressure. Under the initial conditions with high temperature and pressure, excessive ignition energy initiates a strong blast wave and a detonation wave that follows. The chemical reaction in the detonation wave is much more vigorous than that in the deflagration wave and the peak pressure in the detonation wave is much higher than the equilibrium value.

Gas detonation cell width prediction model based on support vector regression

  • Yu, Jiyang;Hou, Bingxu;Lelyakin, Alexander;Xu, Zhanjie;Jordan, Thomas
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1423-1430
    • /
    • 2017
  • Detonation cell width is an important parameter in hydrogen explosion assessments. The experimental data on gas detonation are statistically analyzed to establish a universal method to numerically predict detonation cell widths. It is commonly understood that detonation cell width, ${\lambda}$, is highly correlated with the characteristic reaction zone width, ${\delta}$. Classical parametric regression methods were widely applied in earlier research to build an explicit semiempirical correlation for the ratio of ${\lambda}/{\delta}$. The obtained correlations formulate the dependency of the ratio ${\lambda}/{\delta}$ on a dimensionless effective chemical activation energy and a dimensionless temperature of the gas mixture. In this paper, support vector regression (SVR), which is based on nonparametric machine learning, is applied to achieve functions with better fitness to experimental data and more accurate predictions. Furthermore, a third parameter, dimensionless pressure, is considered as an additional independent variable. It is found that three-parameter SVR can significantly improve the performance of the fitting function. Meanwhile, SVR also provides better adaptability and the model functions can be easily renewed when experimental database is updated or new regression parameters are considered.

Numerical Analysis of Detonation Wave Propagation Characteristics in Annular Channels (환형 관내의 데토네이션 파 전파 특성 해석)

  • Lee, Su-Han;Cho, Deok-Rae;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.2
    • /
    • pp.66-73
    • /
    • 2008
  • Present study examines the detonation wave propagation characteristics in annular channels. Numerical approaches used in the previous studies were extended with marching windows technique. Parametric study has been carried out using a radius of curvature normalized by the channel width considered as unique geometric parameter. In the channels of small radius of curvature, detonation wave is unstable and the regular cell structure is not observed. There is a critical radius of curvature where cell structure can be sustained. The effect of curvature makes the pressure difference on inner and outer surfaces where the detonation wave is overdriven. The results converge to that of straight channel as the radius of curvature gets larger, as expected.

Numerical Analysis of a Highly Unstable Detonation Considering Viscosity and Turbulence Effects (점성 및 난류 효과를 고려한 강한 불안정 데토네이션 파의 수치 해석)

  • Kang, Ki-Ha;Shin, Jae-Ryul;Cho, Deok-Rae;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.57-64
    • /
    • 2011
  • It has been suggested that turbulent effect should be considered for the study of highly unstable detonation of hydrocarbon fuels, as in the case of pulse detonation engine (PDE). A series of numerical study are carried out to understand the characteristics of the highly unstable detonation by considering viscosity, turbulence model and turbulence-combustion interaction model. Through studies of the different levels of modeling, it is understood that the viscosity and turbulence have negligible effects on low frequency characteristics, but tend to enhance the high frequency characteristics. It is also considered that the turbulence-chemistry interaction model should be taken the influence of the activation energy into account for detonation studies.

Numerical Requirements for the Simulation of Detonation Cell Structures (데토네이션 셀 구조 모사를 위한 수치적 요구 조건)

  • Choi Jeong-Yeol;Cho Deok-Rae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.1-14
    • /
    • 2006
  • Present study examines the numerical issues of cell structure simulation for various regimes of detonation phenomena ranging from weakly unstable to highly unstable detonations. Inviscid fluid dynamics equations with $variable-{\gamma} $ formulation and one-step Arrhenius reaction model are solved by a MUSCL-type TVD scheme and 4th order accurate Runge-Kutta time integration scheme. A series of numerical studies are carried out for the different regimes of the detonation phenomena to investigate the computational requirements for the simulation of the detonation wave cell structure by varying the reaction constants and grid resolutions. The computational results are investigated by comparing the solution of steady ZND structure to draw out the minimum grid resolutions and the size of the computational domain for the capturing cell structures of the different regimes of the detonation phenomena.