• 제목/요약/키워드: deterioration prediction

검색결과 225건 처리시간 0.024초

상수관로 노후도 평가를 통한 개량 우선순위 결정에 관한 연구 (Study on the Decision Priority of Rehabilitation for Water Distribution Network Based on Prediction of Pipe Deterioration)

  • 박인찬;권기원;조원철;조관희
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.1391-1394
    • /
    • 2006
  • 노후 상수도관의 개량사업이 지속적으로 시행되고 있지만 노후관 개량사업은 경험적 판단에 의존하는 노후관 평가 및 대안의 선정, 사고예방을 위한 대응적 차원의 개량 사업을 실시함으로 인해 경제적 손실은 물론 시스템의 유기적 기능향상이 이루어지지 않고 있는 실정이다. 이에 본 연구에서는 상수관로 중에서 아연도 강관, 도복장 강관, 닥타일 주철관을 선정하여 현장조사를 실시하였으며, 직접 채취된 관체 시편을 대상으로 육안분석, 관체분석, 그리고 토양부식성 등을 평가하여 채취한 관의 노후도를 종합적으로 평가하였다. 기본적으로 노후도 평가를 점수 평가법을 사용하였으며, 평가된 결과를 바탕으로 향후 노후 수도관 개량사업 추진 내용에서 개대체 우선순위를 결정하기 위한 모델을 제안하였다. 상수관로 노후도 영향 인자 및 가중치 추정은 현재 매설된 상수관로의 노후진척도를 평가하기 위한 노후도 예측모형의 기본 요소이며, 모형의 정확도를 향상시키기 위해 필수적인 사항이다. 관로 노후진척도 분석의 정확도는 장기간의 자료 수집을 통하여 이루어져 이에 대한 분석이 필요하며, 대상관로를 이용하여 개발된 제안식은 향후 지속적으로 현장조사를 실시하여 보완이 필요하겠지만, 노후수도관의 개량 우선순위를 분석하기 위한 매우 유용한 자료가 될 것으로 판단한다.

  • PDF

철근콘크리트 구조물의 염해에 의한 사용수명 예측에 관한 연구 (A Study on the Service Life Prediction of Reinforced Concrete Structures with Chloride Penetration)

  • 김동백;권기준;박병욱
    • 한국안전학회지
    • /
    • 제20권2호
    • /
    • pp.113-118
    • /
    • 2005
  • Recently, the corrosion of reinforced concrete structures has received great attention related with the deterioration of sea-side structures, such as new airport, bridges, and nuclear power plants. In this regards, many studies have been done on the chloride attack in concrete structures. The purpose of the present study is to explore the influences of chloride attack parameters to service life of reinforced concrete structures and to propose the rational program for the guarantee of service life. for this purpose, several codes for durability design have been examined and the diffusion analysis based on Fick's second law has been performed with various parameter value. The present study indicates that durability design code of Japan Society of Civil Engineers is more rational than other codes but the application of durability design code of JSCE to domestic durability design needs more studies to the various parameter values related with chloride penetration.

마멸에 기초한 비대칭 열간단조 금형수명 예측에 관한 유한요소 시뮬레이션 (Finite Element Simulation on Prediction of an Asymmetric Hot Forging Die Life Based on Wear)

  • 최창혁;정경빈;김용조
    • 한국기계가공학회지
    • /
    • 제12권4호
    • /
    • pp.47-54
    • /
    • 2013
  • The main cause of die failure in hot forging is wear. Die wear directly generates the gradual loss of part tolerances, thereby causing deterioration in the dimensional accuracy of a forged part. It is very important to estimate forging cycles, called as die life, at which the die should be repaired or replaced. In this study, in order to estimate the hot forging die life, the finite element simulation of wear on an asymmetric part like a ball joint socket used in vehicle was carried out based on Archard's model. Finite element simulation results were compared with wear amounts of a used die that were measured using a contact stylus profilometer. The simulation results were in relatively good agreement with measurements obtained from the virtual die which was used by 7,000 forging cycles in a forging industry. Consequently, the die life in the hot forging of the ball joint socket was estimated by 10,500 forging cycles on the finisher die.

전시물의 변색 예측을 이용한 박물관 조명기준의 작성 (Making Lighting Standard for a Museum using a Prediction of Exhibits' Color Change)

  • 김홍범;김훈;권세혁
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제10권6호
    • /
    • pp.37-47
    • /
    • 1996
  • 박물관에서는 조명에 의한 전시물의 손상을 최소화하고 관객의 인식의 편의성을 증진시키기 위하여 적절한 조명 기준이 요구된다. 기준의 작성을 위하여 각국의 박물관 조명 기준을 분석하였다. 우리나라 고유의 유물에 대한 변색 특성을 측정한 결과를 이용하여, 각종 광원에 의해 눈에 뜨이는 변색이 일어나는 적산조도를 계산하고 ISO등급에 따른 분류에 수행하였다. 조명기준을 만드는 데에 필요한 여러 가지 고려 사항과 이 사항들에 대하여 결정을 내리는 과정을 서술하였다. 최종적으로 국내의 박물관에 적용할 수 있는 조명기준을 제시하였다.

  • PDF

Probability-based durability design software for concrete structures subjected to chloride exposed environments

  • Shin, Kyung-Joon;Kim, Jee-Sang;Lee, Kwang-Myong
    • Computers and Concrete
    • /
    • 제8권5호
    • /
    • pp.511-524
    • /
    • 2011
  • Although concrete is believed to be a durable material, concrete structures have been degraded by severe environmental conditions such as the effects of chloride and chemical, abrasion, and other deterioration processes. Therefore, durability evaluation has been required to ensure the long term serviceability of structures located in chloride exposed environments. Recently, probability-based durability analysis and design have proven to be reliable for the service-life predictions of concrete structures. This approach has been successfully applied to durability estimation and design of concrete structures. However, currently it is difficult to find an appropriate method engineers can use to solve these probability-based diffusion problems. In this paper, computer software has been developed to facilitate probability-based durability analysis and design. This software predict the chloride diffusion using the Monte Carlo simulation method based on Fick's second law, and provides durability analysis and design solutions. A graphic user interface (GUI) is adapted for intuitive and easy use. The developed software is very useful not only for prediction of the service life but for the durability design of the concrete structures exposed to chloride environments.

Prediction of Deterioration Rate for Composite Material by Moisture Absorption

  • Kim, Yun-Hae;An, Seung-Jun;Jo, Young-Dae;Bae, Chang-Won;Moon, Kyung-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권2호
    • /
    • pp.296-302
    • /
    • 2010
  • If the fiber reinforced plastic is exposed to the moisture for a long period of time, most of moisture absorption occurs on the resin place, thus dropping cohesiveness between the molecules as the water molecules permeated between high molecular chains grant high molecular mobility and flexibility. Also as the micro crack occurs due to the permeation of moisture on the interface of glass fiber and epoxy resin, it is developed to the overall damage of interface place. Hence, the study on absorption is essential as the mechanical and physical properties of fiber reinforced composites are reduced. However, the study on absorption has the inconvenience needing to expose composite materials to fresh water or seawater for 1 month or up to 1 year. Therefore, this study has exposed fiber reinforced composites to fresh water and has developed a model with an accuracy of 98% after comparing the analysis value obtained by using ANSYS while basing on the experimental value of property decline by absorption and the basic properties of glass fiber and epoxy resin used in the experiment.

An applied model for steel reinforced concrete columns

  • Lu, Xilin;Zhou, Ying
    • Structural Engineering and Mechanics
    • /
    • 제27권6호
    • /
    • pp.697-711
    • /
    • 2007
  • Though extensive research has been carried out for the ultimate strength of steel reinforced concrete (SRC) members under static and cyclic load, there was only limited information on the applied analysis models. Modeling of the inelastic response of SRC members can be accomplished by using a microcosmic model. However, generally used microcosmic model, which usually contains a group of parameters, is too complicated to apply in the nonlinear structural computation for large whole buildings. The intent of this paper is to develop an effective modeling approach for the reliable prediction of the inelastic response of SRC columns. Firstly, five SRC columns were tested under cyclic static load and constant axial force. Based on the experimental results, normalized trilinear skeleton curves were then put forward. Theoretical equation of normalizing point (ultimate strength point) was built up according to the load-bearing mechanism of RC columns and verified by the 5 specimens in this test and 14 SRC columns from parallel tests. Since no obvious strength deterioration and pinch effect were observed from the load-displacement curve, hysteresis rule considering only stiffness degradation was proposed through regression analysis. Compared with the experimental results, the applied analysis model is so reasonable to capture the overall cyclic response of SRC columns that it can be easily used in both static and dynamic analysis of the whole SRC structural systems.

적층 천연고무 면진장치의 장기성능과 크리프에 대한 예측 (Prediction of Long Term Performance and Creep of Laminated Natural Rubber Bearings(NRB))

  • 황기태;서대원;조성국
    • 한국지진공학회논문집
    • /
    • 제17권3호
    • /
    • pp.117-125
    • /
    • 2013
  • Seismic isolation has been considered and utilized in various industries as a way to prevent huge damage on to structures by large earthquakes in various industries. The laminated Laminated rubber bearings is are most frequently used in seismic isolation systems. The structural Structural safety could not be assured unless the performance of the rubber bearing is not guaranteed for the life time of the structure under the consideration that the bearing is a critical structural member to sustain vertical loads in the seismically isolated structure. However, there are few studies on the deterioration problems of rubber bearings during their service life. The long term performance of the rubber bearings was not considered in past designs of seismically isolated structures. This study evaluates the long term performance and creep characteristics of laminated natural rubber bearings that are used in seismically isolated buildings. For the this study, a set of accelerated thermal aging tests and creep tests are were performed on real specimens. The experimental results show that the natural rubber bearings would have a stable change rate of change for durability under severe environmental conditions for a long time.

Defection Detection Analysis Based on Time-Dependent Data

  • Song, Hee-Seok;Kim, Jae-Kyeong;Chae, Kyung-Hee
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2002년도 추계정기학술대회
    • /
    • pp.445-453
    • /
    • 2002
  • Past and current customer behavior is the best predicator of future customer behavior. This paper introduces a procedure on personalized defection detection and prevention for an online game site. The basic idea for our defection detection and prevention is adopted from the observation that potential defectors have a tendency to take a couple of months or weeks to gradually change their behavior (i.e. trim-out their usage volume) before their eventual withdrawal. For this purpose, we suggest a SOM (Self-Organizing Map) based procedure to determine the possible states of customer behavior from past behavior data. Based on this representation of the state of behavior, potential defectors are detected by comparing their monitored trajectories of behavior states with frequent and confident trajectories of past defectors. The key feature of this study includes a defection prevention procedure which recommends the desirable behavior state for the ext period so as to lower the likelihood of defection. The defection prevention procedure can be used to design a marketing campaign on an individual basis because it provides desirable behavior patterns for the next period. The experiments demonstrate that our approach is effective for defection prevention and efficient for defection detection because it predicts potential defectors without deterioration of prediction accuracy compared to that of the MLP (Multi-Layer Perceptron) neural network.

  • PDF

냉장 컨테이너 내부의 공기유동 및 열전달 현상에 대한 CFD 시뮬레이션 (CFD Simulation of Airflow and Heat Transfer in the Cold Container)

  • 윤홍선;권진경;정훈;이현동;김영근;윤남규
    • Journal of Biosystems Engineering
    • /
    • 제32권6호
    • /
    • pp.422-429
    • /
    • 2007
  • To prevent deterioration of agricultural products during cold transportation, optimized temperature control is essential. Because the control of temperature and thermal uniformity of transported products are mainly governed by cooling air flow pattern in the transportation equipment, the accurate understanding and removal of appearance of stagnant air zone by poor ventilation is key to design of optimized cooling environment. The objectives of this study were to develop simulation model to predict the airflow and heat transfer phenomena in the cold container and to evaluate the effect of fan blowing velocity on the temperature level and uniformity of products using the CFD approach. Comparison of CFD prediction with PIV measurement showed that RSM turbulent model reveals the more reasonable results than standard $k-{\varepsilon}$ model. The increment of fan blowing velocity improved the temperature uniformity of product and reduced almost linearly the averaged temperature of product.