• 제목/요약/키워드: deterioration prediction

검색결과 223건 처리시간 0.025초

Experimental investigation on multi-parameter classification predicting degradation model for rock failure using Bayesian method

  • Wang, Chunlai;Li, Changfeng;Chen, Zeng;Liao, Zefeng;Zhao, Guangming;Shi, Feng;Yu, Weijian
    • Geomechanics and Engineering
    • /
    • 제20권2호
    • /
    • pp.113-120
    • /
    • 2020
  • Rock damage is the main cause of accidents in underground engineering. It is difficult to predict rock damage accurately by using only one parameter. In this study, a rock failure prediction model was established by using stress, energy, and damage. The prediction level was divided into three levels according to the ratio of the damage threshold stress to the peak stress. A classification predicting model was established, including the stress, energy, damage and AE impact rate using Bayesian method. Results show that the model is good practicability and effectiveness in predicting the degree of rock failure. On the basis of this, a multi-parameter classification predicting deterioration model of rock failure was established. The results provide a new idea for classifying and predicting rockburst.

GPA 기법을 적용한 스마트 무인기용 터보축 엔진의 성능진단에 관한 연구 (A Study on Performance Diagnostics of Turbo-Shaft Engine For SUAV Using Gas Path Analysis)

  • 이은영;노태성;최동환;이창호
    • 한국추진공학회지
    • /
    • 제10권3호
    • /
    • pp.82-89
    • /
    • 2006
  • 최근 가스 터빈 엔진의 설계에 있어서 엔진 운용 및 정비에 소요되는 비용은 중요한 설계변수로 대두되었다. 이에 따라 엔진의 유지 및 보수가 조립상태에서 이루어져야 한다는 개념이 확대되고 있으나, 실제로 이것은 엔진의 상태를 정확히 예측할 수 있을 때에만 가능한 것이다. 따라서 본 연구에서는 항공기에 장착/운용 중인 각 성능요소들을 측정하고 분석하여 엔진 성능을 진단하는 가스경로해석과 퍼지로직을 적용한 엔진 성능진단 코드를 개발하였으며, 이를 스마트 무인기용 터보축 엔진에 적용하여 지상 정지 상태에서의 엔진의 단일 성능저하를 정량적으로 예측하였다.

Prediction of Nucleate Pool Boiling Heat Transfer Coefficients of Ternary Refrigerant R407C

  • Kwak, Kyung-Min;Bai, Cheol-Ho;Chung, Mo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제6권
    • /
    • pp.93-103
    • /
    • 1998
  • The nucleate boiling heat transfer experiments are performed using a ternary refrigerant R407C which is a candidate of alternatives of HCFC 22. The boiling phenomena of R-32, R-125 and R-134a which are the constituent refrigerants of R407C are also investigated. The nucleate boiling heat transfer coefficients of R407C are less than those of HCFC 22 which have the similar physical and transport properties. In our experimental pressure range, which is similar to the operational pressure of air conditioning system, the deterioration of boiling heat transfer coefficients of mixture refrigerant R407C does not appear for moderate wall superheat region. Since nucleate boiling heat transfer coefficients cannot be obtained from ideal mixing law of mixture, Thome's method was used to predict. To account for the heat flux effect and system pressure in Thome's method, the correcting factor, a(P.L1T), was introduced and obtained from experiments for ternary refrigerant R407C.

  • PDF

A fuzzy expert system for diagnosis assessment of reinforced concrete bridge decks

  • Ramezanianpour, Ali Akbar;Shahhosseini, Vahid;Moodi, Faramarz
    • Computers and Concrete
    • /
    • 제6권4호
    • /
    • pp.281-303
    • /
    • 2009
  • The lack of safety of bridge deck structures causes frequent repair and strengthening of such structures. The repair induces great loss of economy, not only due to direct cost by repair, but also due to stopping the public use of such structures during repair. The major reason for this frequent repair is mainly due to the lack of realistic and accurate assessment system for the bridge decks. The purpose of the present research was to develop a realistic expert system, called Bridge Slab-Expert which can evaluate reasonably the condition as well as the service life of concrete bridge decks, based on the deterioration models that are derived from both the structural and environmental effects. The diagnosis assessment of deck slabs due to structural and environmental effects are developed based on the cracking in concrete, surface distress and structural distress. Fuzzy logic is utilized to handle uncertainties and imprecision involved. Finally, Bridge Slab-Expert is developed for prediction of safety and remaining service life based on the chloride ions penetration and fick's second law. Proposed expert system is based on user-friendly GUI environment. The developed expert system will allow the correct diagnosis of concrete decks, realistic prediction of service life, the determination of confidence level, the description of condition and the proposed action for repair.

모터펌프의 지능형 진단시스템 구현에 관한 연구 (A Study on the Implementation of Intelligent Diagnosis System for Motor Pump)

  • 안재현;양오
    • 반도체디스플레이기술학회지
    • /
    • 제18권4호
    • /
    • pp.87-91
    • /
    • 2019
  • The diagnosis of the failure for the existing electrical facilities was based on regular preventive maintenance, but this preventive maintenance was limited in preventing a lot of cost loss and sudden system failure. To overcome these shortcomings, fault prediction and diagnostic techniques are critical to increasing system reliability by monitoring electrical installations in real time and detecting abnormal conditions in the facility early. As the performance and quality deterioration problem occurs frequently due to the increase in the number of users of the motor pump, the purpose is to build an intelligent control system that can control the motor pump to maximize the performance and to improve the quality and reliability. To this end, a vibration sensor, temperature sensor, pressure sensor, and low water level sensor are used to detect vibrations, temperatures, pressures, and low water levels that can occur in the motor pump, and to build a system that can identify and diagnose information to users in real time.

Risk Factors for Sarcopenia, Sarcopenic Obesity, and Sarcopenia Without Obesity in Older Adults

  • Kim, Seo-hyun;Yi, Chung-hwi;Lim, Jin-seok
    • 한국전문물리치료학회지
    • /
    • 제28권3호
    • /
    • pp.177-185
    • /
    • 2021
  • Background: Muscle undergoes change continuously with aging. Sarcopenia, in which muscle mass decrease with aging, is associated with various diseases, the risk of falling, and the deterioration of quality of life. Obesity and sarcopenia also have a synergy effect on the disease of the older adults. Objects: This study examined the risk factors for sarcopenia, sarcopenic obesity, and sarcopenia without obesity and developed prediction models. Methods: This machine-learning study used the 2008-2011 Korea National Health and Nutrition Examination Surveys in the analysis. After data curation, 5,563 older participants were selected, of whom 1,169 had sarcopenia, 538 had sarcopenic obesity, and 631 had sarcopenia without obesity; the remaining 4,394 were normal. Decision tree and random forest models were used to identify risk factors. Results: The risk factors for sarcopenia chosen by both methods were body mass index (BMI) and duration of moderate physical activity; those for sarcopenic obesity were sex, BMI, and duration of moderate physical activity; and those for sarcopenia without obesity were BMI and sex. The areas under the receiver operating characteristic curves of all prediction models exceeded 0.75. BMI could predict sarcopenia-related disease. Conclusion: Risk factors for sarcopenia-related diseases should be identified and programs for sarcopenia-related disease prevention should be developed. Data-mining research using population data should be conducted to enhance the effectiveness of early treatment for people with sarcopenia-related diseases through predictive models.

콘크리트 탄산화 및 열효과에 의한 경년열화 예측을 위한 기계학습 모델의 정확성 검토 (Accuracy Evaluation of Machine Learning Model for Concrete Aging Prediction due to Thermal Effect and Carbonation)

  • 김현수
    • 한국공간구조학회논문집
    • /
    • 제23권4호
    • /
    • pp.81-88
    • /
    • 2023
  • Numerous factors contribute to the deterioration of reinforced concrete structures. Elevated temperatures significantly alter the composition of the concrete ingredients, consequently diminishing the concrete's strength properties. With the escalation of global CO2 levels, the carbonation of concrete structures has emerged as a critical challenge, substantially affecting concrete durability research. Assessing and predicting concrete degradation due to thermal effects and carbonation are crucial yet intricate tasks. To address this, multiple prediction models for concrete carbonation and compressive strength under thermal impact have been developed. This study employs seven machine learning algorithms-specifically, multiple linear regression, decision trees, random forest, support vector machines, k-nearest neighbors, artificial neural networks, and extreme gradient boosting algorithms-to formulate predictive models for concrete carbonation and thermal impact. Two distinct datasets, derived from reported experimental studies, were utilized for training these predictive models. Performance evaluation relied on metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analytical outcomes demonstrate that neural networks and extreme gradient boosting algorithms outshine the remaining five machine learning approaches, showcasing outstanding predictive performance for concrete carbonation and thermal effect modeling.

단경간 및 다경간 PSC-I 교량의 바닥판 및 거더의 균열분포 예측 (Prediction of Crack Distribution for the Deck and Girder of Single-Span and Multi-Span PSC-I Bridges)

  • 정현진;안효준;김재환;박기태;이종한
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제27권6호
    • /
    • pp.102-110
    • /
    • 2023
  • 국내 고속도로 교량 중 가장 많은 비중을 차지하고 있는 PSC-I 거더교의 최근 10년간 정밀 안전진단 데이터의 상태등급을 분석한 결과 41.3%가 C등급으로 나타났다. 노후화되는 교량이 증가함에 따라 선제적 관리가 중요시되고 있다. 바닥판과 거더는 손상 및 열화 발생 시 교체 주기가 길어 교량의 서비스 및 노후도에 미치는 영향이 매우 크다. 또한 신축이음과 교량받침 등의 장치 손상 발생 비율도 높아 교량 부재에 미치는 영향에 대한 연구가 필요한 실정이다. 따라서 본 연구에서는 단경간 및 다경간 대표 PSC-I 거더 교량을 선정하여, 교량의 주요부재 및 부재 장치의 단일손상과 바닥판의 열화가 결합된 이종손상 시나리오를 정의하였다. 이종손상이 발생한 경우 단일손상이 발생한 경우보다 균열 발생 면적이 증가하였으며, 단경간 교량의 경우 교량받침 손상으로 인해 거더 균열 분포가 크게 확산되었으며, 다경간 교량의 경우 신축이음 양면손상으로 인해 바닥판의 균열분포가 크게 확산되었다. 이를 통해 교량 장치 손상이 발생하였을 때, 신속한 보수 및 교체가 이루어지지 않으면 손상 발생과 손상 확산으로 2차 피해를 유발할 수 있어, 바닥판 및 거더의 응답에 대한 지속적인 관찰과 대응이 필요할 것으로 판단된다.

페인트에서 방출되는 TVOC 및 HCHO 방출량 예측모델 (A Prediction Model for TVOC and HCHO Emission of Paint Materials)

  • 김형수;이경회
    • KIEAE Journal
    • /
    • 제3권1호
    • /
    • pp.13-20
    • /
    • 2003
  • It is highly recognized that there is need for protection against indoor air pollution, as we realize environmental pollution is growing, For example, in an indoor environment, a person spends more than 80 percent of their time inside the building. Thus, concern about indoor decoration materials is growing, since they cause pollution in the rooms of an apartment, as well as in offices. As the indoor decoration materials become more diverse and lusurious, so the effect of VOCs(Volatile Organic Compounds) and HCHO(Formaldehy) is growing. The indoor decoration materials cause the Sick Building Syndrome, such as headaches, dizziness, or lack of concentraion, and they in turn cause serious deterioration in people's health. In this study, I probed the status of the indoor air pollution and carried on an investigation and analysis about the prevention technique. In doing so, I performed experimental tests and an assessment of the indoor decoration materials of an apartment. I also examined elements of the emitted and the emission. Finally, I examined the character of emissions, by changing environmental conditions, such as the temperature, humidity, and ventilation. With respect to VOCs tests, I applied the method of solid state adsorption using the adsorptive tube, based on the measurement of the American EPA TO-17, ASTM 5116-97, and the measurement of the Japanese Wall Decoration Industrial Association. The tested sample was analyzed by High Performance Liquid Chromatography, after going through the process of dissolvent extraction. As subjects of the test, Paint were selected. The process of this test is as follows; first, I figured out the character of the emission, by measuring the emitted concentration of VOCs and HOHC from the indoor decoration materials of an apartment. Second, I made a small-scale chamber and the test was processed in the chamber in order to suggest an environment-friendly prediction modlel development.

Rancidity Prediction of Soybean Oil by Using Near-Infrared Spectroscopy Techniques

  • Hong, Suk-Ju;Lee, Ah-Yeong;Han, Yun-hyeok;Park, Jongmin;So, Jung Duck;Kim, Ghiseok
    • Journal of Biosystems Engineering
    • /
    • 제43권3호
    • /
    • pp.219-228
    • /
    • 2018
  • Purpose: This study evaluated the feasibility of a near-infrared spectroscopy technique for the rancidity prediction of soybean oil. Methods: A near-infrared spectroscopy technique was used to evaluate the rancidity of soybean oils which were artificially deteriorated. A soybean oil sample was collected, and the acid values were measured using titrimetric analysis. In addition, the transmission spectra of the samples were obtained for whole test periods. The prediction model for the acid value was constructed by using a partial least-squares regression (PLSR) technique and the appropriate spectrum preprocessing methods. Furthermore, optimal wavelength selection methods such as variable importance in projection (VIP) and bootstrap of beta coefficients were applied to select the most appropriate variables from the preprocessed spectra. Results: There were significantly different increases in the acid values from the sixth days onwards during the 14-day test period. In addition, it was observed that the NIR spectra that exhibited intense absorption at 1,195 nm and 1,410 nm could indicate the degradation of soybean oil. The PLSR model developed using the Savitzky-Golay $2^{nd}$ order derivative method for preprocessing exhibited the highest performance in predicting the acid value of soybean oil samples. onclusions: The study helped establish the feasibility of predicting the rancidity of the soybean oil (using its acid value) by means of a NIR spectroscopy together with optimal variable selection methods successfully. The experimental results suggested that the wavelengths of 1,150 nm and 1,450 nm, which were highly correlated with the largest absorption by the second and first overtone of the C-H, O-H stretch vibrational transition, were caused by the deterioration of soybean oil.