• Title/Summary/Keyword: detergent additive

Search Result 38, Processing Time 0.024 seconds

Effects of Applying Microbial Additive Inoculants to Spent Mushroom Substrate (Flammulina velutipes) on Rumen Fermentation and Total-tract Nutrient Digestibility in Hanwoo Steers (팽이버섯 부산물 발효에 따른 한우 거세우 반추위 성상 및 소화율에 미치는 영향)

  • Baek, Youl-Chang;Jeong, Jin-Young;Oh, Young-Kyoon;Kim, Min-Seok;Lee, Sung-Dae;Lee, Hyun-Jeong;Do, Yoon-Jung;Ahmadi, Farhad;Choi, Hyuck
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.3
    • /
    • pp.569-586
    • /
    • 2017
  • We inoculated a spent mushroom substrate from Flammulina velutipes (SMSF) with a microbial additive and assessed the effects on chemical composition, ruminal fermentation parameters, and total-tract nutrient digestibility. In Exp. 1, three cannulated Hanwoo steers were used in an in situ trial to determine the degradation kinetics of dry matter (DM) and crude protein (CP). In Exp. 2, three Hanwoo steers were randomly assigned to experimental diets according to a $3{\times}3$ Latin square for a 3-week period (2 weeks for adaptation and 1 week for sample collection). Experimental diets included the control diet (3.75 kg/d formulated concentrate mixture + 1.25 kg/d rice straw), SMSF diet (3.19 kg/d formulated concentrate mixture + 1.25 kg/d rice straw + 0.56 kg/d SMSF), and inoculated SMSF (ISMSF) diet (3.19 kg/d formulated concentrate mixture + 1.25 kg/d rice straw + 0.56 kg/d ISMSF). The chemical composition of ISMSF did not differ from that of SMSF. Microbial additive inoculation decreased pH (P<0.05) and improved preservation for SMSF. The percentages of DM, neutral detergent fiber (NDF), and acid detergent fiber (ADF) in ISMSF were slightly lesser than those in SMSF. Ruminal fermentation characteristics and total-tract nutrient digestibility were not affected by diet. Overall, microbial additive inoculation improved preservation for SMSF and may allow improved digestion in the rumen; however, the total digestible nutrients (TDN) of SMSF and ISMSF diets were slightly lesser than the control diet. The ISMSF can be used as an alternative feedstuff to partially replace formulated concentrate feed.

Addition of Novel Lactobacillus plantarum KCC-10 and KCC-19 to Improve Fermentation Quality and Characterization of Italian Ryegrass Silage

  • Srigopalram, Srisesharam;Ilavenil, Soundharrajan;Vijayakumar, Mayakrishnan;Park, Hyung Soo;Lee, Kyung Dong;Choi, Ki Choon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.35 no.3
    • /
    • pp.195-200
    • /
    • 2015
  • An investigation was carried out to evaluate the potential role of Lactobacillus Plantarum KCC-10 and KCC-19 on the quality and fermentation characterization of Italian ryegrass (IRG) silages. The physiochemical properties of IRG silage such as crude protein content, neutral detergent fiber, acid detergent fiber, total digestible nutrient and in vitro dry matter digestibility were not affected by KCC-10 and KCC-19. The pH of IRG silage in KCC-10 and KCC-19 treatments decreased compared to the control (p<0.05), while the lactic acid content in KCC-10 and KCC-19 treatments increased compared to the control (p<0.05). In addition, the number of lactic acid bacteria (LAB) in the KCC-10 treatment increased compared to the control (p<0.05). The number of lactic acid bacteria in KCC-19 increased, but there was no significant difference in all treatments. Therefore, we recommend L. plantarum KCC-10 and KCC-19 as potential additive candidates in IRG silage with lots of advantages.

Effect of Addition of Lactic Acid Bacteria on Fermentation Quality of Miscanthus sinnensis (젖산균 첨가가 억새 사일리지의 사료가치 및 품질에 미치는 영향)

  • Srigopalram, Srisesharam;Kuppusamy, Palaniselvam;Ilavenil, Soundharrajan;Park, Hyung-Su;Kim, Ji Hye;Yoon, Yong Hee;Kim, Young Jin;Jung, Jeong Sung;Choi, Ki-Choon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.2
    • /
    • pp.140-144
    • /
    • 2017
  • This study was conducted to investigate the effect of microbial inoculation as additive consisting of novel lactic acid bacteria on quality and fermentation characterization of Miscanthus sinnensis silages. The contents of crude protein, acid detergent fiber, neutral detergent fiber in treatments of additive of lactic acid bacteria (ALAB) inoculation had similar to control. pH of Miscanthus sinnensis (MS) silage in treatments of ALAB inoculation significantly decreased as compared to control (p<0.05). The content of lactic acid in in treatments of ALAB inoculation significantly increased (p<0.05), but the content of acetic acid in treatments of ALAB inoculation decreased. In addition, number of lactic acid bacteria in treatments of ALAB inoculation significantly increased as compared to control (p<0.05). Therefor, we suggest that MS silage improved by inoculation of additive consisting of novel lactic acid bacteria.

Evaluation of Ice Adhesion in an Aqueous Solution with Functional Materials by Stirring Power (교반동력에 의한 기능성 물질 함유 수용액의 빙부착 평가)

  • Seung, Hyun;Baek, Jong-Hyun;Hong, Hee-Ki;Kang, Chae-Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.8
    • /
    • pp.720-727
    • /
    • 2004
  • In the process of ice-slurry making, the phenomenon of ice adhesion influences extremely to ice making system. In this study, the effect on the ice adhesion by thermal storage material with additives is investigated quantitatively. Various solutions of 300 g in a stainless vessel were frozen under stirring. Through the experiment the ice adhesion between cooling wall and ice-slurry was compared with each other by measuring the stirring power. From the experiment, the stirring power in EG, SCA solution was smaller than those in the solution containing functional materials, such as poly-vinyl-alcohol or kitchen detergent.

Evaluation of Whole Crop Barley for Silage Quality Contest in 2008 (2008년도 사일리지 품질경연대회에 출품한 청보리의 품질 평가)

  • Lee, Joung-Kyong;Kim, Jong-Duk;Lee, Hyun-Jin;Jeon, Gyeong-Heop;Kim, Jong-Geun;Seo, Sung;Jung, Min-Woong;Choi, Jin-Hyuk;Jo, Nam-Chul;Park, Hyung-Soo;Kim, Won-Ho;Lim, Young-Chul
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.29 no.4
    • /
    • pp.345-354
    • /
    • 2009
  • The barley (Hordeum vulgare L.) is now widely grown as a whole crop silage in Korea, but the quality of that silage does not examined from farms. Therefore, this experiment was conducted to evaluate the forage quality of whole crop barley that was participated in Silage Quality Contest in 2008. These data were classified by region, dry matter (DM) yield, with or not additive, planting and harvest date. Difference on the lactic acid content of barley silage was detected in the region, DM yield, additive and harvest date (p<0.05), however, there were partially significant differences in chemical composition. There were significant differences among moisture content in DM yield, pH in additive, and crude ash content in additive and planting date of barley silage. Crude protein content was significant difference in the region, and ether extract content was in region, DM yield and harvest date, however, non-fiber carbohydrate was significant difference in planting date of barley silage. Neutral detergent fiber, acid detergent fiber and relative feed value were significant difference only in the cultivation region of whole crop barley. According to this experiment, differences in the silage quality were observed among whole crop barley silages. Therefore, nutritive value as well as moisture and pH are important in silage quality evaluation of whole crop barley. Especially, lactic acid is an important factor for the evaluation of whole crop barley silage.

NUTRITIONAL QUALITY OF WILTED NAPIER GRASS (Pennisetum purpureum Schum.) ENSILED WITH OR WITHOUT MOLASSES

  • Yokota, H.;Kim, J.H.;Okajima, T.;Ohshima, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.4
    • /
    • pp.673-679
    • /
    • 1992
  • To investigate the effects of molasses addition at ensiling on nutritional quality of wilted napier grass, chemical quality and nutrient composition of the silages, digestibility and nitrogen retention at feeding trials were analysed using 4 goats in a cross over design. The results are as follows : 1. Molasses addition at ensiling decreased pH value (3.99) and ammonia nitrogen, and increased lactic acid content by 285% compared to non-additive silage (83.5 g/kg dry matter). 2. There were no differences in digestibilities of dry matter, crude protein, neutral detergent fiber, acid detergent fiber, hemicellulose and cellulose between the silage ensiled with molasses (MS silage) and the silage ensiled without molasses (WS silage). Urinary nitrogen excretion, however, significantly (p<0.05) decreased in goats fed the MS silage, and nitrogen retention was positive in goats fed the MS silages, but negative in goats fed the WS silage. 3. Acetic acid concentration in remained fluids in goats fed the MS silage was lower and propionic and butyric acid concentrations were higher than those in goats fed the WS silage. As water soluble carbohydrate content was higher in the MS silage than in the WS silage, a part of added molasses was still remained in the silage at the feeding trials and could be utilized for energy sources by the goats. Nitrogen may be also effectively utilized in goats fed the MS silage, because the silage were inhibited in proteolysis during ensiling.

Effect of addition of lactic acid bacteria on fermentation quality of Miscanthus sinnensis silage

  • Choi, Ki-Choon;Srigopalram, Srisesharam;Ilavenil, Soundharrajan;Kuppusamy, Palaniselvam;Park, Hyung-Su;Kim, Ji Hye;Yoon, Yong Hee;Kim, Young Jin;Jung, Jeong Sung
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.284-284
    • /
    • 2017
  • The aim of the study is to investigate the effect of new lactic acid bacteria as an additive for improving the quality of the Miscanthus sinnensis silage fermentation. The percentage of crude protein (CP), acid detergent fiber (ADF), and neutral detergent fiber (NDF) in lactic acid bacteria (LAB) inoculated silage showed similar to the control. The pH of Miscanthus sinnensis (MS) silage in the treatment of LAB inoculation significantly decreased as compared to control (p<0.05). The content of lactic acid in the treatment of LAB inoculation significantly increased (p<0.05) as compared to control, but, the content of acetic acid was reduced in the treatment of LAB inoculation. Also, numbers of the lactic acid bacteria population were higher in LAB-treated silage as compared to control (p<0.05). The present study suggested that an addition of lactic acid bacteria significantly improved the quality fermentation in Miscanthus sinnensis silage.

  • PDF

Dietary lysophospholipids supplementation inhibited the activity of lipolytic bacteria in forage with high oil diet: an in vitro study

  • Kim, Hanbeen;Kim, Byeongwoo;Cho, Seongkeun;Kwon, Inhyuk;Seo, Jakyeom
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.10
    • /
    • pp.1590-1598
    • /
    • 2020
  • Objective: The objective of this study was to evaluate the effects of lysophospholipids (LPL) supplementation on rumen fermentation, degradability, and microbial diversity in forage with high oil diet in an in vitro system. Methods: Four experimental treatments were used: i) annual ryegrass (CON), ii) 93% annual ryegrass +7% corn oil on a dry matter (DM) basis (OiL), iii) OiL with a low level (0.08% of dietary DM) of LPL (LLPL), and iv) OiL with a high level (0.16% of dietary DM) of LPL (HLPL). An in vitro fermentation experiment was performed using strained rumen fluid for 48 h incubations. In vitro DM degradability (IVDMD), in vitro neutral detergent fiber degradability, pH, ammonia nitrogen (NH3-N), volatile fatty acid (VFA), and microbial diversity were estimated. Results: There was no significant change in IVDMD, pH, NH3-N, and total VFA production among treatments. The LPL supplementation significantly increased the proportion of butyrate and valerate (Linear effect [Lin], p = 0.004 and <0.001, respectively). The LPL supplementation tended to increase the total bacteria in a linear manner (p = 0.089). There were significant decreases in the relative proportions of cellulolytic (Fibrobacter succinogenes and Ruminococcus albus) and lipolytic (Anaerovibrio lipolytica and Butyrivibrio proteoclasticus) bacteria with increasing levels of LPL supplementation (Lin, p = 0.028, 0.006, 0.003, and 0.003, respectively). Conclusion: The LPL supplementation had antimicrobial effects on several cellulolytic and lipolytic bacteria, with no significant difference in nutrient degradability (DM and neutral detergent fiber) and general bacterial counts, suggesting that LPL supplementation might increase the enzymatic activity of rumen bacteria. Therefore, LPL supplementation may be more effective as an antimicrobial agent rather than as an emulsifier in the rumen.

Effect of additives and filling methods on whole plant corn silage quality, fermentation characteristics and in situ digestibility

  • Jiao, Ting;Lei, Zhaomin;Wu, Jianping;Li, Fei;Casper, David P.;Wang, Jianfu;Jiao, Jianxin
    • Animal Bioscience
    • /
    • v.34 no.11
    • /
    • pp.1776-1783
    • /
    • 2021
  • Objective: This project aimed to evaluate the effects of both different additives and filling methods on nutritive quality, fermentation profile, and in situ digestibility of whole plant corn silage. Methods: Whole plant corn forage harvested at 26.72% dry matter (DM) was chopped and treated with two filling methods, i) fill silos at one time (F1), ii) fill silos at three times (F3), packing samples into one/three silo capacity at the first day, another one/three capacity at the second day, then one/three at the third day, three replicates. For each replicate, samples were treated with three additives, i) control (CTRL, no additive), ii) Sila-Max (MAX, Ralco Nutrition Inc., Marshall, MN, USA), and iii) Sila-Mix (MIX, Ralco Nutrition Inc., USA). With three replicates of each secondary treatment, there were nine silos, 54 silos in total. Each silo had a packing density of 137.61 kg of DM/m3. All silos were weighed and stored in lab at ambient temperature. Results: After 60 d of ensiling, all items showed good silage fermentation under MAX filled one time or three times (p<0.01). Higher silage quality for all additives was obtained at filling one time than that filled three times (p<0.01). The highest DM and lowest DM loss rate (DMLR) occurred to MAX treatment at two filling methods (p<0.01); Digestibility of acid detergent fiber, neutral detergent fiber (NDF), and curde protein had the same results as silage quality (p<0.01). Yield of digestible DM and digestible NDF also showed higher value under MAX especially for filling one time (p<0.05). Conclusion: All corn silages showed good fermentation attributes (pH<4.0). The forage filled one time had higher silage quality than that filled three times (p<0.01). MAX with homofermentative lactic acid bacteria enhanced the lactic acid fermentation, silage quality and nutrient digestibility, and so improved the digestible nutrient yield.

Effects of applying cellulase and starch on the fermentation characteristics and microbial communities of Napier grass (Pennisetum purpureum Schum.) silage

  • Zhao, Guoqiang;Wu, Hao;Li, Li;He, Jiajun;Hu, Zhichao;Yang, Xinjian;Xie, Xiangxue
    • Journal of Animal Science and Technology
    • /
    • v.63 no.6
    • /
    • pp.1301-1313
    • /
    • 2021
  • This study investigated the effects of applying cellulase and starch on the fermentation characteristics and microbial communities of Napier grass silage after ensiling for 30 d. Three groups were studied: No additives (control); added cellulase (Group 1); and added cellulase and starch (Group 2). The results showed that the addition of cellulase and starch decreased the crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF) and pH significantly (p < 0.05) and increased water-soluble carbohydrate (WSC) content (p < 0.05). The addition of additives in two treated groups exerted a positive effect on the lactic acid (LA) content, lactic acid bacteria (LAB) population, and lactic acid / acetic acid (LA/AA) ratio, even the changes were not significant (p > 0.05). Calculation of Flieg's scores indicated that cellulase application increased silage quality to some extent, while the application of cellulase and starch together significantly improved fermentation (p < 0.05). Compared with the control, both additive groups showed increased microbial diversity after ensiling with an abundance of favorable bacteria including Firmicutes and Weissella, and the bacteria including Proteobacteria, Bacteroidetes, Acinetobacter increased as well. For alpha diversity analysis, the combined application of cellulase and starch in Group 2 gave significant increases in all indices (p < 0.05). The study demonstrated that the application of cellulase and starch can increase the quality of Napier grass preserved as silage.