• Title/Summary/Keyword: detention facilities

Search Result 62, Processing Time 0.025 seconds

Study of analytical probabilistic models for urban flood control detention facilities in Korea (도시 홍수 저감 저류시설 설계를 위한 해석적 확률모형 연구)

  • Lee, Moonyoung;Jeon, Seol;Kim, Si Yeon;An, Heejin;Jung, Kichul;Park, Daeryong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.298-298
    • /
    • 2021
  • 본 연구에서는 국내 6개 지역 서울, 강릉, 대전, 광주, 부산, 제주의 30년 치 시강우 자료에 해석적 확률모형(Analytical Probabilistic Models) 방법을 적용하여 도시 홍수 저감을 목적으로 하는 저류시설 설계를 위한 유출량 예측 정도를 지역별로 비교하고자 하였다. 강우 사상 분포의 해석적 확률모형을 적용하기 위해 무강우 시간을 결정하여 독립 호우를 결정하는데, 자기상관계수와 변동계수를 활용한 무강우 지속시간의 산정(IETD, Interevent Time Definition) 방법을 사용하였다. 해석적 확률모형인 유출량의 확률밀도함수(PDF, Probability Density Function)를 유도하기 위해서 불투수 지역과 투수 지역의 영향을 고려하여 유출계수를 적용하는 강우-유출 관계를 가지고 유출량을 정의하였다. 강우량, 강우 지속시간, 무강우시간과 같은 강우특성은 1변수 지수함수의 PDF를 따른다고 가정하였다. 확률모형 방법의 적합성을 판단하기 위해 결정된 IETD에 따라 각 지역별로 실제 강우 사상을 해석적 모델과 연속모의실험인 SWWM(Storm Water Management Model)에 적용하여 불투수율에 따른 유출량을 산정하였다. 각 방식으로 얻은 유출량 결과는 모든 지역에서 매우 유사하게 나타났고 결론적으로 우리나라에서 도시 홍수 저감을 위한 저류시설의 계획과 설계에 확률모형 방법이 적용 가능하다는 것을 확인할 수 있었다.

  • PDF

A Study of Optimal-CSOs by Continuous Rainfall/Runoff Simulation Techniques (연속 강우-유출 모의기법을 이용한 최적 CSOs 산정에 관한 연구)

  • Jo, Deok Jun;Kim, Myoung Su;Lee, Jung Ho;Kim, Joong Hoon
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1068-1074
    • /
    • 2006
  • For receiving water quality protection a control systems of urban drainage for CSOs reduction is needed. Examples in combined sewer systems include downstream storage facilities that detain runoff during periods of high flow and allow the detained water to be conveyed by an interceptor sewer to a centralized treatment plant during periods of low flow. The design of such facilities as storm-water detention storage is highly dependant on the temporal variability of storage capacity available as well as the infiltration capacity of soil and recovery of depression storage. For the continuous long-term analysis of urban drainage system this study used analytical probabilistic model based on derived probability distribution theory. As an alternative to the modeling of urban drainage system for planning or screening level analysis of runoff control alternatives, this model has evolved that offers much ease and flexibility in terms of computation while considering long-term meteorology. This study presented rainfall and runoff characteristics of the subject area using analytical probabilistic model. Runoff characteristics manifested the unique characteristics of the subject area with the infiltration capacity of soil and recovery of depression storage and was examined appropriately by sensitivity analysis. This study presented the average annual CSOs, number of CSOs and event mean CSOs for the decision of storage volume.

A Study on the Stormwater Drainage Method of Overflow Type for the Prevention of Urban Flood due to Abnormal Precipitation (이상강우 발생시 도시침수 방지를 위한 월류형 우수배수방법 연구)

  • Seo, Se Deok;Park, Hyung Keun;Kim, Tae Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.5
    • /
    • pp.569-577
    • /
    • 2019
  • Urban flooding has been a frequent phenomenon in recent years caused by the increase in maximum stormwater runoff arising from abnormal rainfall due to global warming, urban development, and development of lowlands according to population inflows. In order to respond positively against abnormal precipition in the city, it is necessary to check the GWI (Green Water Infra) effect and effectively utilize the existing stormwater detention tanks and treat stormwater to prevent local flooding. In this study, Overflow Type stormwater drainage methods are evaluated as a method of preventing urban flooding in abnormal precipitation using the Dynamic Wave Analysis SWMM (Storm Water Management Model) provided by the United States Environmental Protection Agency. Comparing and analyzing the Upward Watergate Type and Overflow Type, it was analyzed that the Overflow Type reduces the maximum flood discharge by 61 % and the total flood volume by 56 % in the rainfall of Typhoon Kong-rey. The application of the Overflow Type and the natural-pneumatic drainage method to the rainfall of Typhoon Soulik resulted in a 20 % reduction in maximum flood runoff and a 67 % reduction in total flood quantity. Therefore, as a solution to the abnormal rain fall, it is possible to improve the existing stormwater detection tank and install additional facilities. It is expected to be economically possible to strom drainage under limited conditions.

A Study on Drainage Facilities in Mountainous Urban Neighborhood Parks - The Cases of Baebongsan Park and Ogeum Park in Seoul - (산지형 도시근린공원의 배수시설 특성 - 서울시 배봉산공원과 오금공원을 사례로 -)

  • Lee, Sang-Suk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.5
    • /
    • pp.80-92
    • /
    • 2010
  • The purpose of this study was to analyze drainage facilities in mountainous urban neigbborhood parks--Baebongsan Park and Ogeum Park--in Seoul. Based on an analysis of existing drainage facilities, the volume of storm water runoff (VSW), the runoff rate of open channels(ROC), and the detention capacity of open charmels(DCOC) by each drainage watershed, the coefficient of runoff rate(CROC) as evaluated to be relevant between VSW and ROC and the coefficient of the detention capacity of open channe1s(CDCOC) as evaluated with DCOC compared to VSW were estimated and analyzed by parks and by watersheds. The results are as follows: 1. The total drainage area of Baebongsan Park was 34.13ha including surface runoff area(15.05ha; 44.09%), open channel area(l4.60ha; 42.78%), and natural waterway area(4.48ha; 13.13%). The total drainage area of Ogeum Park was 20.39ha including open channel area (10.14ha; 49.73%), ridge-side gutter area(7.17ha; 35.16%), surface runoff area (2.52ha; 12.36%), and natural waterway area (0.56ha; 2.75%). In Baebongsan Park, the portion of surface runoff was comparatively higher while the portion of artificial drainage area was higber in Ogeum Park. 2. In Baebongsan Park drainage districts were largely divided: VSW was $7.28m^3/s$ in total(average $0.23m^3/s$). Comparatively, tbe VSW in Ogeum Park, including smaller drainage districts, was $4.37m^3/s$ in total(average $0.12m^3/s$). 3. The ROC of Baebmgsan Park was $11.58m^3/s$ in total(average $0.77m^3/s$) and the CROC was 5.26, while in Ogeum Park, the ROC was $15.40m^3/s$(average $0.34m^3/s$) and tbe CROC was 8.87 higher than that of Baebongsan Because the size and slope of the open channel in Baebongsan Park was higher, the average ROC was larger, while tbe CROC of Ogeum Park was higher than that of Baebongsan Park, for the VSW in Ogeum Park was comparatively lower. 4. The DCOC in Baebongsan Park was $554.54m^3$ and the average of CDCOC was 179.83. That of Ogeum Park was $717.74m^3$ and the average of the CDCOC was 339.69, meaning that the DCOC of Ogeum Park was so much higber that drainage facilities in Ogeum Park were built intensively. This study was focused m the capacity of the drainage facilities in mountainous urban neighborhood parks by using the CROC to evaluate relevance between VSW and ROC and the CDCOC to evaluate the DCOC as compared with VSW. The devised methodology and coefficient for evaluating drainage facilities in mountainous urban neighborhood parks may he universally applicable through additional study. Further study m sustainable urban drainage systems for retaining rainwater in a reservoir and for enhancing ecological value is required in the near future.

Flood Inundation Analysis in Urban Area Using XP-SWMM (XP-SWMM 모형을 이용한 도심지역 침수해석)

  • Kim, Jinsu;Lee, Wonho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.1
    • /
    • pp.29-36
    • /
    • 2015
  • Current domestic research is to demonstrate the effectiveness and efficiencies of flood prevention measures through one-dimensional numerical analysis and this study's object is to help water managers to make the efficient decisions by applying the two-dimensional urban run off model XP-SWMM model in the flooded area and comparing with the flood prevention measures. Statistics were analyzed, based on the data collected from Cheongju Weather Service from 1967 to 2011 for 45 years. 50 years Flood frequency simulations of water flow capacity analysis of the target area for flooded areas $539,548m^2$, inundation depth 1.0 m, was analyzed by inundation time of 48 minutes. When comparing with the constructions of bypass road and underground storage facilities to increase the water flow capacity of A1 small drainage areas as flood protection, if you install a batching target underground detention basin with a capacity of $13,500m^3$, it is expected that the flood by rainfall with frequency of 50 years will be resolved completely. In preparation for extreme weather in the future flood mitigation measures, underground storage tank installation is considered a better efficient way.

Pollutant Load Characteristics of a Rural Watershed of Juam Lake (주암호 농촌 소유역 오염부하특성)

  • Han, Kuk-Heon;Yoon, Kwang-Sik;Jung, Jae-Woon;Yoon, Suk-Gun;Kim, Young-Joo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.3
    • /
    • pp.77-86
    • /
    • 2005
  • A monitoring study has been conducted to identify hydrologic conditions, water quality and nutrient loading characteristics of small watershed in Juam Lake. Climate data of the watershed were collected; flow rate was measured and water quality sampling was conducted at the watershed outlet for this study. Water quality data revealed that T-P concentrations meet I grade of lake water quality standard during non-storm period, but degraded up to II-III grade of lake water quality standard during storm period. The observed T-N concentrations always exceeded lake water quality standard. Therefore, T-P was identified as limiting chemical constituent for eutrophication of Juam Lake. T-P concentration of non-storm period also revealed that point source pollution is not serious in the watershed. Three year monitoring results showed that the observed T-N losses were $10.85\~18.88$ kg/ha and T-P losses were $0.028\~0.323$ kg/ha during six month (Mar. - Oct.), respectively. Major portion of runoff amount discharged by a few storm events a year and nutrient load showed apparent seasonal variation. Huge runoff amounts were generated by intense storms, which make application of water treatment or detention facilities ineffective. Monitoring results confirmed that water quality improvement by abating nonpoint source pollution in rural watershed of monsoon climate should be focused on source control. T-P losses from paddy field seemed to consist of significant amount of total load from study watershed. Therefore, management of drainage from paddy field is considered to be important for preventing algal blooming problem in Juam Lake.

Unsaturated Shear Strength Characteristics of Nakdong River Silty Sand (낙동강 실트질 모래의 불포화 전단강도 특성)

  • Jin, Guang-Ri;Shin, Ji-Seop;Park, Sung-Sik;Kim, Ki-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.2
    • /
    • pp.47-56
    • /
    • 2013
  • There are many technical problems, which can not be resolved by the concept of saturated soil mechanics. Unsaturated soils show an apparent cohesion due to negative pore pressure and relatively lower permeability due to entrapped air compared to saturated soils. The determination of engineering properties of soils with various moisture content is very important to evaluate shear strength and stability of natural and engineered soils. So various researches should be made on unsaturated soils. Especially, sandy soils are widely distributed near Nakdong river, one of the four rivers where Restoration Projects were carried out. Many structures such as dams, flood control facilities, detention facilities and reservoirs have been built in this area. In this study, unsaturated triaxial compressive tests were conducted on sands or silty sands at Nakdong river in order to provide their fundamental characteristics for design and construction of geotechnical structures. As a result of the tests, the maximum deviator stress increased as the confining stress and matric suction increased. The cohesion increased non-linearly as the matric suction increased, but the angle of internal friction was marginally changed.

Analysis of Water Quality Characteristics Using Simulated Long-Term Runoff by HEC-HMS Model and EFDC Model (HEC-HMS 모형에 의한 장기유출량과 EFDC 모형을 이용한 호소 내 수질특성 분석)

  • Kim, Yon-Soo;Kim, Soo-Jun;Kim, Hung-Soo
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.707-720
    • /
    • 2011
  • For the lake case, the detention phenomenon of water body occurs and stays for a long time. Especially, following the layer of water depth direction, the lake body and water quality problems are different from the water quality of river. So according to time, the stream and water quality can be simulated by the 3-Dimensional Model, which can divide water layer for reservoir or lake. The water quality simulation result will become more reliability. For this study, the 3-Dimension Model - EFDC was used to simulate water quality of Unam reservoir in the Sumjin Dam. The HEC-GeoHMS and HEC-HMS Rainfall - Runoff Model based on GIS were used to estimate long-term runoff, and input data was constructed to the observed water level, meteorological data, water temperature, T-N and T-P. In order to apply the EFDC model, water depth was divided into 3 layers and 5,634 grids were extracted. After constructing the grid net, the water quality change of Unam reservoir in time and space was simulated. Overall, long term runoff simulation reflected the actual observed runoff well, through the water quality simulation, according to the pollution factors, the behavior characteristics can be checked, and the simulated water quality can be properly reflected. The function of EFDC has been confirmed, which water quality can be properly simulated. In the near future, to establish countermeasures for Intake Facilities of Watershed and Management, this support which some basic tools can be applied is in expectation.

Analysis of Hydraulic Characteristics for the Design Parameters of Culvert Outlet Facilities in Detention Pond (저류지 암거방류시설 설계인자의 수리학적 특성 분석)

  • Lee, Jae Joon;Jang, Joo Young;Lee, Hoo Sang;Jang, Hyun Min
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.213-213
    • /
    • 2011
  • 근래 이상기후에 의한 강우량 증대와 도시화에 따른 첨두유출량의 증대 및 도달시간의 단축은 기존의 유수지만으로 도시홍수를 대처하는데 그 한계점에 다다르게 되었다. 1990년대에 들어 각종 우수유출 저감시설의 활용으로 이상의 문제를 해결하고자 하는 노력들이 시작되었으며, 현재 신규개발지에 저류지와 같은 우수유출저감시설 설치를 법제도적으로 의무화 하고 있어, 전국적으로 천여개소의 저류지가 시설되어 있거나 계획 중에 있다. 저류지는 개발로 인해 증가된 첨두유출량을 개발전의 상태로 저감시키기 위하여 임시 또는 상시 저류하거나 저류능력 이상의 유출량에 대해서는 암거방류시설을 통해 하류부의 하천 또는 하도로 방류시키는 역할을 수행하는 수공구조물로서 일반적으로 저류지 계획 및 설계는 첨두유출량 증가분에 대해 초점을 맞추고 있을 뿐 방류시설에 대한 구체적인 설계는 이루어지지 않고 있는 실정이다. 또한 현재 국내에는 저류지 방류시설로 주로 사용되는 암거에 관한 설계규정이나 기법은 미미한 상태로, 한국도로공사(1991)에서 발표한 "도로배수계획"을 이용하고 있으며, 이는 미국 연방도로국(FHWA, 1985)에서 발표한 설계기법을 그대로 인용하고 있다. 즉, 지형 또는 현장 여건에 따라 암거 흐름의 8형식 중 하나의 형식으로 결정하고, 그 형식에 따라 관련도표를 이용한 시산법 또는 도식해법을 적용하여 유입부 상류수위를 산정함으로써 암거설계가 이루어진다. 하지만 이러한 암거설계 방식은 도로 배수암거에 적합한 것으로 저류지 배수암거에 적용하기에는 무리가 있다고 본다. 따라서, 본 연구에서는 저류지의 일반적인 특성상 암거흐름 8형식 중 Class-II군의 암거 상류부 수위가 잠수된 조건 즉, 평상시 저류지가 일정수위 이상의 저류량을 유지하고 있는 상태에서 저류지 암거방류시설의 대표적인 설계인자인 암거직경, 암거경사, 암거경사, 하류단 수위조건의 변화에 따른 상류부 수위변화를 유량별로 분석해 보았다. 방류 암거의 개수를 고려하기 위하여 암거상류부 수위와 암거직경의 관계해석 시 암거단면적을 이용하여 분석하였으며, 각각의 유량별로 상류부 수위와 암거단면적의 관계를 회귀식으로 제시하였다. 암거상류부 수위와 암거경사의 관계를 분석한 결과 암거경사가 5~20%로 변화할 때 암거상류부 수위의 변화는 2~5%정도의 매우 작은 변화를 보임을 확인할 수 있었으며, 암거길이의 경우는 해석 조건의 특성상 상류부 수위에 영향이 전혀 나타나지 않았다. 암거상류부 수위와 암거하류단 수위의 관계에서 암거상류부 수위는 암거하류단 수위가 암거직경과 퇴사위 높이의 합보다 암거하류단의 수위가 높아지는 시점부터 암거하류단 수위에 비례해서 증가되는 결과를 알 수 있었다.

  • PDF

A Study on the Social Support, Ego-resiliency and Stress Coping Strategies of School-Dropout Adolescents (학업중단 청소년의 사회적지지, 자아탄력성과 스트레스 대처방식 연구)

  • Kim, Hyun-ji;Yang, Myong-Suk
    • Journal of Digital Convergence
    • /
    • v.15 no.1
    • /
    • pp.23-34
    • /
    • 2017
  • This study investigated relative explanation of social support, ego-resiliency and stress coping strategies to help adaptive coping style of school-dropout adolescents under stress situation. To this end, 101 school-dropout adolescents were surveyed by visiting and requesting the outofschool youth supporting project, youth detention center, and adolescent protective and treatment facilities in Daejeon, Cheongnam, and Chungbuk. As analysis methods, descriptive statistical analysis, pearson's correlation, and hierarchical analysis were conducted and the research results are as follows. First, stress coping strategies showed positive relationship with social support and ego-resiliency. Second, a variable that showed greater explanation power for stress coping strategies was the environmental variable, the social support. Third, it was identified that there was greater explanation power when the environmental variable, the social support, and the personal variable, the ego-resiliency, were put in at the same time for stress coping strategies. According to the result, this study implies that schools, community, national policy effort and systemetic approach are required as well as improvement of personal coping capabilities in order to overcome difficulties school-dropout adolescents face.