• Title/Summary/Keyword: detection and tracking

Search Result 1,273, Processing Time 0.032 seconds

Active Facial Tracking for Fatigue Detection (피로 검출을 위한 능동적 얼굴 추적)

  • 박호식;정연숙;손동주;나상동;배철수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.603-607
    • /
    • 2004
  • The vision-based driver fatigue detection is one of the most prospective commercial applications of facial expression recognition technology. The facial feature tracking is the primary technique issue in it. Current facial tracking technology faces three challenges: (1) detection failure of some or all of features due to a variety of lighting conditions and head motions; (2) multiple and non-rigid object tracking and (3) features occlusion when the head is in oblique angles. In this paper, we propose a new active approach. First, the active IR sensor is used to robustly detect pupils under variable lighting conditions. The detected pupils are then used to predict the head motion. Furthermore, face movement is assumed to be locally smooth so that a facial feature can be tracked with a Kalman filter. The simultaneous use of the pupil constraint and the Kalman filtering greatly increases the prediction accuracy for each feature position. Feature detection is accomplished in the Gabor space with respect to the vicinity of predicted location. Local graphs consisting of identified features are extracted and used to capture the spatial relationship among detected features. Finally, a graph-based reliability propagation is proposed to tackle the occlusion problem and verify the tracking results. The experimental results show validity of our active approach to real-life facial tracking under variable lighting conditions, head orientations, and facial expressions.

  • PDF

Active Facial Tracking for Fatigue Detection (피로 검출을 위한 능동적 얼굴 추적)

  • Kim, Tae-Woo;Kang, Yong-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.3
    • /
    • pp.53-60
    • /
    • 2009
  • The vision-based driver fatigue detection is one of the most prospective commercial applications of facial expression recognition technology. The facial feature tracking is the primary technique issue in it. Current facial tracking technology faces three challenges: (1) detection failure of some or all of features due to a variety of lighting conditions and head motions; (2) multiple and non-rigid object tracking; and (3) features occlusion when the head is in oblique angles. In this paper, we propose a new active approach. First, the active IR sensor is used to robustly detect pupils under variable lighting conditions. The detected pupils are then used to predict the head motion. Furthermore, face movement is assumed to be locally smooth so that a facial feature can be tracked with a Kalman filter. The simultaneous use of the pupil constraint and the Kalman filtering greatly increases the prediction accuracy for each feature position. Feature detection is accomplished in the Gabor space with respect to the vicinity of predicted location. Local graphs consisting of identified features are extracted and used to capture the spatial relationship among detected features. Finally, a graph-based reliability propagation is proposed to tackle the occlusion problem and verify the tracking results. The experimental results show validity of our active approach to real-life facial tracking under variable lighting conditions, head orientations, and facial expressions.

  • PDF

Depth tracking of occluded ships based on SIFT feature matching

  • Yadong Liu;Yuesheng Liu;Ziyang Zhong;Yang Chen;Jinfeng Xia;Yunjie Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1066-1079
    • /
    • 2023
  • Multi-target tracking based on the detector is a very hot and important research topic in target tracking. It mainly includes two closely related processes, namely target detection and target tracking. Where target detection is responsible for detecting the exact position of the target, while target tracking monitors the temporal and spatial changes of the target. With the improvement of the detector, the tracking performance has reached a new level. The problem that always exists in the research of target tracking is the problem that occurs again after the target is occluded during tracking. Based on this question, this paper proposes a DeepSORT model based on SIFT features to improve ship tracking. Unlike previous feature extraction networks, SIFT algorithm does not require the characteristics of pre-training learning objectives and can be used in ship tracking quickly. At the same time, we improve and test the matching method of our model to find a balance between tracking accuracy and tracking speed. Experiments show that the model can get more ideal results.

Surf points based Moving Target Detection and Long-term Tracking in Aerial Videos

  • Zhu, Juan-juan;Sun, Wei;Guo, Bao-long;Li, Cheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5624-5638
    • /
    • 2016
  • A novel method based on Surf points is proposed to detect and lock-track single ground target in aerial videos. Videos captured by moving cameras contain complex motions, which bring difficulty in moving object detection. Our approach contains three parts: moving target template detection, search area estimation and target tracking. Global motion estimation and compensation are first made by grids-sampling Surf points selecting and matching. And then, the single ground target is detected by joint spatial-temporal information processing. The temporal process is made by calculating difference between compensated reference and current image and the spatial process is implementing morphological operations and adaptive binarization. The second part improves KALMAN filter with surf points scale information to predict target position and search area adaptively. Lastly, the local Surf points of target template are matched in this search region to realize target tracking. The long-term tracking is updated following target scaling, occlusion and large deformation. Experimental results show that the algorithm can correctly detect small moving target in dynamic scenes with complex motions. It is robust to vehicle dithering and target scale changing, rotation, especially partial occlusion or temporal complete occlusion. Comparing with traditional algorithms, our method enables real time operation, processing $520{\times}390$ frames at around 15fps.

A vehicle detection and tracking algorithm for supervision of illegal parking (불법 주정차 차량 단속을 위한 차량 검지 및 추적 기법)

  • Kim, Seung-Kyun;Kim, Hyo-Kak;Zhang, Dongni;Park, Sang-Hee;Ko, Sung-Jea
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.232-240
    • /
    • 2009
  • This paper presents a robust vehicle detection and tracking algorithm for supervision of illegal parking. The proposed algorithm is composed of four parts. First, a vehicle detection algorithm is proposed using the improved codebook object detection algorithm to segment moving vehicles from the input sequence. Second, a preprocessing technique using the geometric characteristics of vehicles is employed to exclude non-vehicle objects. Then, the detected vehicles are tracked by an object tracker which incorporates histogram tracking method with Kalman filter. To make the tracking results more accurate, histogram tracking results are used as measurement data for Kalman filter. Finally, Real Stop Counter (RSC) is introduced for trustworthy and accurate performance of the stopped vehicle detection. Experimental results show that the proposed algorithm can track multiple vehicles simultaneously and detect stopped vehicles successfully in the complicated street environment.

  • PDF

Development of Low-Cost Vision-based Eye Tracking Algorithm for Information Augmented Interactive System

  • Park, Seo-Jeon;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • v.7 no.1
    • /
    • pp.11-16
    • /
    • 2020
  • Deep Learning has become the most important technology in the field of artificial intelligence machine learning, with its high performance overwhelming existing methods in various applications. In this paper, an interactive window service based on object recognition technology is proposed. The main goal is to implement an object recognition technology using this deep learning technology to remove the existing eye tracking technology, which requires users to wear eye tracking devices themselves, and to implement an eye tracking technology that uses only usual cameras to track users' eye. We design an interactive system based on efficient eye detection and pupil tracking method that can verify the user's eye movement. To estimate the view-direction of user's eye, we initialize to make the reference (origin) coordinate. Then the view direction is estimated from the extracted eye pupils from the origin coordinate. Also, we propose a blink detection technique based on the eye apply ratio (EAR). With the extracted view direction and eye action, we provide some augmented information of interest without the existing complex and expensive eye-tracking systems with various service topics and situations. For verification, the user guiding service is implemented as a proto-type model with the school map to inform the location information of the desired location or building.

A Self-Supervised Detector Scheduler for Efficient Tracking-by-Detection Mechanism

  • Park, Dae-Hyeon;Lee, Seong-Ho;Bae, Seung-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.10
    • /
    • pp.19-28
    • /
    • 2022
  • In this paper, we propose the Detector Scheduler which determines the best tracking-by-detection (TBD) mechanism to perform real-time high-accurate multi-object tracking (MOT). The Detector Scheduler determines whether to run a detector by measuring the dissimilarity of features between different frames. Furthermore, we propose a self-supervision method to learn the Detector Scheduler with tracking results since it is difficult to generate ground truth (GT) for learning the Detector Scheduler. Our proposed self-supervision method generates pseudo labels on whether to run a detector when the dissimilarity of the object cardinality or appearance between frames increases. To this end, we propose the Detector Scheduling Loss to learn the Detector Scheduler. As a result, our proposed method achieves real-time high-accurate multi-object tracking by boosting the overall tracking speed while keeping the tracking accuracy at most.

Towards Real-time Multi-object Tracking in CPU Environment (CPU 환경에서의 실시간 동작을 위한 딥러닝 기반 다중 객체 추적 시스템)

  • Kim, Kyung Hun;Heo, Jun Ho;Kang, Suk-Ju
    • Journal of Broadcast Engineering
    • /
    • v.25 no.2
    • /
    • pp.192-199
    • /
    • 2020
  • Recently, the utilization of the object tracking algorithm based on the deep learning model is increasing. A system for tracking multiple objects in an image is typically composed of a chain form of an object detection algorithm and an object tracking algorithm. However, chain-type systems composed of several modules require a high performance computing environment and have limitations in their application to actual applications. In this paper, we propose a method that enables real-time operation in low-performance computing environment by adjusting the computational process of object detection module in the object detection-tracking chain type system.

Vision-Based Finger Action Recognition by Angle Detection and Contour Analysis

  • Lee, Dae-Ho;Lee, Seung-Gwan
    • ETRI Journal
    • /
    • v.33 no.3
    • /
    • pp.415-422
    • /
    • 2011
  • In this paper, we present a novel vision-based method of recognizing finger actions for use in electronic appliance interfaces. Human skin is first detected by color and consecutive motion information. Then, fingertips are detected by a novel scale-invariant angle detection based on a variable k-cosine. Fingertip tracking is implemented by detected region-based tracking. By analyzing the contour of the tracked fingertip, fingertip parameters, such as position, thickness, and direction, are calculated. Finger actions, such as moving, clicking, and pointing, are recognized by analyzing these fingertip parameters. Experimental results show that the proposed angle detection can correctly detect fingertips, and that the recognized actions can be used for the interface with electronic appliances.

Object Detection and Tracking with Infrared Videos at Night-time (야간 적외선 카메라를 이용한 객체 검출 및 추적)

  • Choi, Beom-Joon;Park, Jang-Sik;Song, Jong-Kwan;Yoon, Byung-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.2
    • /
    • pp.183-188
    • /
    • 2015
  • In this paper, it is proposed to detect and track pedestrian and analyse tracking performance with nighttime CCTV video. The detection is performed by a cascade classifier with Haar-like feature trained with Adaboost algorithm. Tracking pedestrian is performed by a particle filter. As results of experiments, it is introduced that efficient number of particles and the distributions are applied to track pedestrian at the night-time. Performance of detection and tracking is verified with nighttime CCTV video that is obtained at alleys etc.